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Abstract

In this paper, we report some challenges encountered in de-
veloping Prometheus, a software environment that supports
the construction and revision of explanatory scientific mod-
els. Our responses to these challenges include the use of
quantitative processes, to encode models and background
knowledge, and the combination of AND/OR search through
a space of model structures with gradient descent to estimate
parameters. We report our experiences with Prometheus on
three scientific modeling tasks and lessons learned from those
efforts. We conclude by noting additional challenges that
were not apparent at the outset of our work.

Introduction
Consider a problem scenario common to science. An ecolo-
gist is studying an aquatic ecosystem with the intent to learn
how it functions. Hopefully, this knowledge will lead to
a mathematical model that accurately predicts the ecosys-
tem’s response to environmental management. Data gather-
ing has yielded weekly measurements for several variables
such as the concentrations of nitrogen, phosphorus, and phy-
toplankton. Daily measurements exist for water tempera-
ture, solar irradiance, wind speed, and wind direction. Fi-
nally, weekly reports of zooplankton abundance exist for the
summer months only.

In addition to these data, the ecologist also has knowl-
edge regarding the mechanisms operating within an aquatic
ecosystem. For example, the zooplankton likely eats the
phytoplankton, but the rate of consumption, the regulating
factors, and the overall effects of this grazing process are
undetermined. Luckily the situation is not hopeless. The
scientist can use deeper theoretical knowledge to guide the
construction of the final model. This knowledge can consist
of reasonable bounds on rates, plausible causal links, and
possible formulations of grazing amongst other things. In
many cases, the ecologist will even have an existing mathe-
matical model (e.g., Moore et al. 2002) that is adaptable to
the current ecosystem.

The described problem presents several challenges to ar-
tificial intelligence. To begin with, scientific data are of-
ten rare and difficult to obtain. The costs of collecting and
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preparing the data are nontrivial, and high rates or long pe-
riods of sampling may be impossible. As a result, the num-
ber of samples probably ranges in the low hundreds. Given
the number of variables, parameters, and relationships in the
target models, common methods for data mining are inap-
propriate, and we require new techniques.

Another challenge requires us to support incremental
model revision in terms of both causal structure and sys-
tem parameters. Systems scientists like our ecologist come
to a modeling task with prior knowledge of various sorts. At
one level, this knowledge consists of the possible relation-
ships between entities in a system and ways to formulate
those relationships. For example, the ecologist knows that a
process of phytoplankton growth exists and that it must be
included in the final model. However, whether this growth
can best be modeled as exponential, logistic, or something
more complex may be unknown. At a different level, the
ecologist may seed the discovery process with a prior model
and search for revisions that bring it into contact with the
current data.

The next challenge revolves around the need for com-
municable models. Ecologists often express their models
in terms of differential and algebraic equations, but ma-
chine learning traditionally uses its own notations (e.g., de-
cision trees, logical rules, Bayesian networks), which re-
sults in models that are not easily communicated to domain
scientists. We need to develop techniques for knowledge
discovery where the output closely approximates the their
own modeling language. In addition, scientists want mod-
els that move beyond description to provide explanations of
their data. Regression-style techniques generate pithy sum-
maries of the observations, but fail to make contact with the
underlying generating mechanisms. This desire poses the
challenge of developing methods that construct explanatory
models rather than purely descriptive ones.

These issues raise algorithmic challenges, but introspec-
tion suggests another problem: few scientists want to be re-
placed.1 While many automated discovery systems strive to
do just that, most researchers would prefer to participate in
the model-building process. Thus, it behooves us to concen-
trate on establishing a creative partnership between compu-
tational methods and domain experts.

1For empirical evidence, ask one of your colleagues.



generic entity primary producer:
variables:

conc {sum}
growth limitation {min}

parameters:
loss rate [0,10]

Figure 1: The entity type for a primary producer contains a
measure of its species’ concentration, growth rate, and maxi-
mum growth rate. Processes affecting the concentration will
have additive influence, whereas the current growth limita-
tion will always be the minimum produced by multiple pro-
cesses. The loss rate must fall between zero and ten.

This paper introduces the above challenges and our re-
sponse as embodied in Prometheus, an environment that
supports the creation of quantitative models of dynamic sys-
tems. The next section describes the knowledge represen-
tation behind the program. We then discuss the applica-
tion itself, where we highlight the integration of various
threads of research to compose an intelligent application.
After that, we briefly discuss previous results from the use
of Prometheus and identify new challenges that have arisen
during experimentation. Finally, we summarize our work
and highlight unmet challenges that seem ripe for further re-
search.

Quantitative Process Models
We designed Prometheus’s knowledge representation to ad-
dress many of the above-mentioned challenges. In partic-
ular, the underlying language should ease communication
between the scientist and the program. In this case, the
software must produce models that are systems of equations
and must support a style of modeling that is familiar to the
users. In ecology, the resulting models often portray mech-
anisms, which suggests that the language of entities and the
processes in which they participate (Machamer, Darden, &
Craver 2000) would be appropriate. Forbus (1984) previ-
ously developed a formalism for qualitative process models,
which takes this basic perspective, but our purposes, which
include close contact with numeric data, suggest a need for
quantitative process models.

We have eschewed the possibility of operating directly on
the equations for two reasons. First, although systems of
equations are the output of this modeling process, scientists
initially work at a conceptual level. For instance, Jorgensen
and Bendoricchio (2001) recommend developing a concep-
tual structure of the studied system as the first step in ecolog-
ical modeling. They build this structure by listing the state-
variables and then identifying the physical, chemical, and
biological processes that link the variables to each other and
the environment. They then use mathematical formulations
of the processes to produce an equivalent system of equa-
tions. We want to support this modeling style that allows
scientists to design the larger-scale features of the modeled
system before making low-level decisions about the nature
of the processes.

generic process exponential loss{loss}:
entity roles:
S {primary producer, grazer} <1 to 1>

equations:
d[S.conc, t, 1] = −1 ∗ S.loss rate ∗ S.conc

Figure 2: The generic process for exponential loss has type
“loss” and takes one entity with type primary producer or
grazer. The single equation in this process states that the
first derivative of the concentration with respect to time is
equal to a loss influenced by the species’ loss rate.

Our second reason for adding a layer of representation
on top of the equations is one of practicality. Unlike pre-
vious modeling environments, Prometheus supports auto-
mated search through the space of models. The space of
differential equations is far too large for unguided search,
and most certainly contains models that fit the observed data
but lack any sense of plausibility. The processes that we
use contain meaningfully grouped chunks of equations that
can be combined with each other to form the model. For
instance, a process describing predation between species
would have one equation that decreases the prey population
and another that increases the predator population. There-
fore, removing such a process would completely excise pre-
dation from the model and update the system of equations
appropriately. By defining these processes, we can restrict
Prometheus’s search to a space of plausible models using
the same type of knowledge used by systems scientists.

Both the entities and the processes in quantitative pro-
cess models have two forms: generic and instantiated. A
generic entity, or entity type, declares the variables and pa-
rameters that store relevant properties. We consider param-
eters at both the process and entity levels to be immutable,
model-specific values that fall within a specified range. In
contrast, the variable values can change over time. Variables
themselves fall into one of three classes. An exogenous vari-
able can only influence processes in the model and its values
must be read from a data source. An observed variable must
be explained by the model and must have associated data for
purposes of comparison. And an unobserved variable must
be given an initial value and at the generic level has a range
of in which this value should fall. All variables and param-
eters associated with an entity are passed along with that
entity to any process in which it participates. A generic en-
tity, such as that in Figure 1 can be instantiated by providing
full definitions of the variables, depending on whether they
are observed, unobserved, or exogenous, and by assigning
values to the parameters.

The generic form of a quantitative process, and hence the
instantiated form, was heavily influenced by qualitative pro-
cess theory (Forbus 1984). For example, each generic pro-
cess contains both entity roles and process roles, both of
which may be optional, that are analogous to the Individuals
field of a qualitative process. Entity roles consist of a local
name for an entity along with the number and types of enti-
ties that can fill that role. A process role gives a process type



and the entities to pass along to the selected subprocess. Ad-
ditionally, each generic process can contain conditions sim-
ilar to the QuantityConditions in a qualititive process that
control when that process is active. Finally, the Influences in
a qualititive process correspond to the equations in a quan-
titative process. As a final component, each generic pro-
cess has a type that helps guide the search for plausible sub-
processes. The instantiated form of a process requires the
user to specify the participating entities, the subprocesses,
and the parameter values. Figure 2 shows an example of a
generic process.

Several aspects of the generic processes and generic enti-
ties allow us to guide search through the model space. First,
the use of entity types along with entity roles constrains the
viable participants in a process. Second, the bounds on pa-
rameter values helps guide estimation tools, which we will
discuss later. Third, the hierarchy imposed by process roles
defines an AND/OR tree of possible structures. As men-
tioned previously, each process has a type associated with it,
and all processes of the same type can fill the same process
roles during search. To illustrate, there may be a process
type “growth” which has several forms (e.g., exponential, lo-
gistic, limited). In this case, suppose that a top-level process
called “ecosystem” has a required process role for growth.
The need for such a processs constitutes an AND branch of
the tree, whereas the multiple processes of the correct type
flesh out the OR branch.

The creation of quantitative process models requires mul-
tiple steps. Initially, a user must develop a library of generic
processes and entities. This library can be used for the cre-
ation of multiple models and updated as the need for more
domain knowledge arises. Next, the user should instantiate
entities and processes to form an initial model. This step
may constitute a stopping point, but more likely the user
will compare the model to some observations and adjust the
model as necessary. We are developing Prometheus to sup-
port as much of this procedure as possible.

Model Construction and Revision
Prometheus consists of two major components, the user in-
terface and the model-induction engine. While each presents
its own set of challenges, here we mainly discuss our ap-
proach to those of model construction and revision. How-
ever, for context we mention that Prometheus supports a
wide range of interaction. At a basic level, the user can
view the causal flow of a model as shown in Figure 3 or see
the current state of the system of equations. The program
supports model evaluation by including the ability both to
simulate a model given initial conditions and to compare the
trajectories to observed data. The user can also manually
revise models by altering parameters as well as adding or
deleting processes and entities.

The artificial intelligence behind Prometheus supports au-
tomated model construction and revision. Todorovski and
colleagues (2005) describe the underlying algorithm, which
operates in two distinct search spaces. The first of these in-
volves a search through the symbolic space of model struc-
tures. Beginning with the root process, Prometheus satis-
fies the minimal set of constraints imposed by the hierarchy.

That is, all required processes are included, and no optional
processes are considered. The product of this first step is a
set of model structures that relate entities and processes, but
lack values for the parameters. At this level of the search,
we predominantly draw on traditional, symbolic techniques
from artificial intelligence. Specifically, the program per-
forms a beam search through the AND/OR space defined by
the model structures and guided by the sum of squared error.

For each structure, Prometheus searches a second space
defined by the numeric parameters. We use techniques
from system identification to perform a gradient-descent
search based on the model’s sum of squared error. The core
algorithm, which was designed by Bunch and colleagues
(Bunch, Gay, & Welsch 1993), fits the parameters of dy-
namic, nonlinear systems of equations while ensuring that
the resulting values fall within specified bounds. In practice,
we have found this approach to be unreliable and very slow.

One of the challenges that we mentioned earlier was that
scientists often begin with an initial model that they want to
revise. Prometheus provides the user with several controls
to influence semi-automated revision. As input, the scientist
provides the initial model along with three lists: (1) pro-
cesses that may be removed, (2) generic processes that may
be instantiated, and (3) processes and entities whose param-
eters may be changed.2 The structural search uses the ini-
tial model with all deletable processes removed to seed the
search. From that point on, the algorithm tries both to add
deleted processes back to the model and to add instantiations
of the specified generic processes when possible. For the
most part, revision operates just like induction from scratch,
but the possible moves in the search space are limited by the
scientist’s guidance. Upon completion, the user is given a
list of the best models ranked in terms of the sum of squared
error. Each of these models can be used as jumping off
points for further discoveries.

Use of Prometheus can best be described by example.
Consider the ecologist described at the beginning of the pa-
per. This modeler’s first step is to identify a set of generic
entities and processes expected to operate within the ob-
served ecosystem. This knowledge could be taken from an
earlier developed library or created from scratch. Once this
library is developed, the ecologist can build an initial model
in Prometheus. The model may contain nothing more than a
list of the entities, or it could be fully detailed, with all sus-
pected relationships indicated with instantiated processes.
For this example, we will assume the second case.

With model structure in place, the ecologist can then fit
the parameters using all available data. The resulting model
can be simulated and the results can be compared to the
observations. Now, suppose that the scientist notices that
the simulated phytoplankton population fails to decrease as
expected. Examination of the model shows that nothing is
grazing on the phytoplankton, even though some zooplank-
ton were observed in the area. The ecologist either can man-
ually add the processes associated with grazing, selecting

2The current version of Prometheus only supports changing the
parameters of processes, but development is under way that will
add support for entity-level parameters.



Figure 3: Prometheus can display both a causal diagram of a model and the underlying equations. In the diagram, the ovals are
variables and the boxes are rectangles.

among multiple functional forms or can have Prometheus
search the reduced space of models consisting of the initial
structure plus all possible options for the inclusion of graz-
ing. If the user opts for automated revision, the program will
yield a ranked list of plausible models. One of these models
may be selected, simulated, and evaluated by the scientist
and if necessary, the revision process can continue.

Initial Experiences with Prometheus
We have evaluated Prometheus’ behavior on a variety of sci-
entific domains. In this section, we summarize the nature
of the tasks, the results obtained with the system, and some
lessons suggested by our experiences. We focus on model
construction in all but the Ross Sea domain, but we have
obtained similar results on the other data sets using model
revision. We have reported detailed results in earlier papers
(Langley et al. in press; Asgharbeygi et al. in press), so here
we present only the highlights.

Predator-Prey Interactions in Protists

Predator–Prey systems are among the simplest in ecology,
which makes them a good starting point for evaluation of our
modeling environment. We focused on the protist system
composed of the predator Didinium nasutum and the prey
Paramecium aurelia, for which Jost and Ellner (2000) have
reported concentrations at 12-hour intervals. The data are
fairly smooth and demonstrate several clear cycles.

For this domain, we provided Prometheus with generic
processes for prey growth, predator decay, and predation, in-
cluding alternative functional forms. When constrained by
the process hierarchy, these defined a space of 24 distinct
model structures that, with parameters specified, predict tra-
jectories for the two species’ concentrations from only their
initial values. The system’s search of this space produced a
plausible model that included processes for growth, preda-
tion, and decay. The theoretical curves track the heights and
timing of the observed trajectories quite well.

However, we encountered problems when we presented
the system with the entire Jost and Ellner data, and ob-
tained these results only when we provided it with a se-
lected subset. The early measurements had considerably
lower peaks, which suggested a different regime was oper-
ating for unknown reasons. This reveals an important ability
that Prometheus currently lacks: When a scientific modeling
system cannot explain an entire set of observations, it should
consider ignoring some of the data. Clearly, human scien-
tists have this capacity, and future versions of Prometheus
from a similar capability. Providing computational support
for such selective omissions is an important challenge for
future research.

Population Dynamics in the Ross Sea
The Ross Sea in Antarctica involves a somewhat more com-
plex ecosystem. Here the most important organism is phy-
toplankton, which undergoes repeated cycles of population
increase and decrease. In this case, we had access two sets
of 188 daily measurements for phytoplankton that span two
successive years. Concurrent data were also available for
nitrate concentrations, light levels, and ice coverage.

Based on discussions with our team’s biological oceanog-
rapher (Kevin Arrigo), we identified entities of interest and
developed 25 generic processes that encoded how they might
interact. In addition to phytoplankton and nitrate, the enti-
ties included detritus, which results from phytoplankton de-
cay, and zooplankton, which feeds on phytoplankton. Be-
cause neither were measured, we treated attributes of both
as unobserved theoretical variables. In addition, we seeded
Prometheus with an initial model that substantially reduced
the size of the structural search space. Prometheus produced
a number of models that made sense ecologically and that fit
the first year’s data closely, but we found they generalized
poorly to the second year’s observations.

Inspection of the model suggested that ice differences
across the years had little effect on phytoplankton growth,
although this had originally seemed a likely explanation of
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Figure 4: Performance on test data from the Ross Sea.

differences between the two years. Discussion with our
oceanographer led us to include another generic process
which states that phytoplankton’s absorb of nitrate depends
on available light. Based on this information, Prometheus
found another model that fit the first year’s data nearly as
well as the earlier candidate but that, as Figure 4 shows, gen-
eralized much better to the second year. The implication is
that the nitrogen-to-carbon ratio for phytoplankton varies as
a function of light availability, which the oceanographer be-
lieves is an important claim from an ecological perspective.

The original vision for Prometheus was that it should sup-
port the scientist’s search for models in a well-defined space.
However, our experience with the Ross Sea revealed another
key ability that the system lacks: When a scientific modeling
system cannot account for observed differences, it should
consider new mechanisms that expand its space of plausi-
ble models. Human scientists prefer to explain phenom-
ena in terms of familiar mechanisms, but they can consider
new processes when necessary, presumably by falling back
on more general knowledge. Adding such a capability to
Prometheus is another important direction for future work.

Biochemical Kinetics
We have also tested Prometheus’ ability in a biomedical
domain— biochemical kinetics—which studies physiolog-
ical changes in metabolites over time. We drew upon
time-series data collected by Torralba and colleagues (2003)
about the glycolysis pathway, which converts glucose into
pyruvate and which plays an essential role in most life
forms. They used an impulse response method that, after
a biochemical system has reached steady state, briefly in-
creases the inflow of one substance and measures its effects
on others over time. We had access to 14 data points for six
distinct metabolites known to be involved in glycolysis.

For this domain, we provided the system with 5 generic
processes that encoded four types of metabolic reaction that
appear in pathway models. These differ in how they af-
fect positive and negative fluxes of the substances involved,
with positive flux describing a metabolite’s rate of flow into
a reaction pathway and its negative flux specifying its rate
of flow out. We crafted generic processes irreversible, re-
versible, inhibition, and activation reactions, along with a
fifth that stated a metabolite’s concentration changes as a
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Figure 5: Observed data and predicted trajectories from bio-
chemical kinetics.
weighted sum of its positive and negative fluxes, with each
flux term being multiplied by its respective rate.

When provided with the Torralba et al. data and these
generic processes, Prometheus searched a space of 172 dis-
tinct model and estimated parameters for each candidate.
Figure 5 shows both the observed trajectories and those pre-
dicted by the best-scoring model, which produces good fits
in both qualitative and quantitative terms. However, the
model structure differs from the generally accepted glycoly-
sis pathway in that it includes no inhibition or activation pro-
cesses. Presumably, this occurred because the system could
not introduce unobserved entities to serve as inhibitors and
activators, which suggests another limitation: A scientific
modeling system should consider introducing theoretical en-
tities that augment those provided by the user. Prometheus
can already generate models with unobserved terms, but
only when given by the user. Introducing the ability to pos-
tulate new entities, although still constrained by background
knowledge, would extend the system’s ability to generate
explanatory models that scientists find meaningful.

Discussion
At the outset, we described five challenges that arise when
building a tool to support the construction of scientific mod-
els. These included sparsity of data, the presence of prior
models and knowledge, a match between system output and
the primary domain language, the production of explana-
tory models, and an emphasis on interactivity. We designed
the formalism for quantitative process models and generic
processes with these challenges in mind, and we integrated
different techniques from artificial intelligence and system
identification in response.

The formalism for quantitative process models has some
clear advantages. First, it can be directly translated into
a more familiar representation for the scientists, thereby
addressing the challenge of communication. Second, the
emphasis on domain knowledge cast as processes leads to
mechanisms that explain the behavior of the system under
study. Finally, the processes mesh well with the conceptual
stage of model building, which eases the input of domain
knowledge and prior models to the program.

To meet the challenges involved in model construction
and revision, we borrowed from several research traditions.



Heuristic search of AND/OR trees provides a means for
navigating the space of model structures, while tools from
system identification (e.g., Åström & Eykhoff 1971) direct
search through the parameter space. The use of prior knowl-
edge helps constrain search to produce plausible models
even without large data sets. Finally, theory revision tech-
niques (e.g., Mooney & Ourston 1994) can be applied to
support interactive search, letting the user gauge the size and
nature of revisions at each step in the modeling process.

Experiments with Prometheus identified several open
challenges for the artificial intelligence community. First,
we need a way to ignore connected sets of data, not just iso-
lated outliers, that may keep a program from producing good
models. In dynamic systems, assigning observations to dif-
ferent operating regimes will allow easier identification of
the active mechanisms. Second, a program should be able
to introduce new processes to its library. Third, model con-
struction methods should introduce theoretical entities that
are not specified explicitly by the user. This can increase
the search space substantially, so we need more intelligent
mechanisms to guide search through the model space.

Perhaps the biggest surprise we encountered involved cur-
rent software capabilities. In the early stages of our work,
we believed that techniques for parameter estimation were
ready for application. However, we found the tools available
for nonlinear dynamical systems to be both unreliable and
incredibly slow. Generally parameter estimation techniques
use very little knowledge, and we believe that ideas from
artificial intelligence and knowledge-based reasoning could
improve these systems on both fronts. One possibility is to
incorporate the ideas that scientists have about both the gen-
eral shape that trajectories should take and the relationships
among trajectories and parameters. Bradley et al. (2001)
explored another possibility that used heuristics to avoid un-
necessary parameter estimation. Capitalizing on this type of
knowledge is the strength of artificial intelligence, and inno-
vations in this area will have broad applicability.

Another challenge arises from the fitness measure used
during search. While ecologists and other scientists often
report the sum of squared error or a related number, we
have been told informally that a model’s ability to match the
shape of observed trajectories holds more importance. For
instance, scientists will tolerate some amount of phase shift,
which can have strong adverse effects on the sum of square
error. To combat this problem, we could introduce a quanti-
tative measure of shape that takes the expert’s evaluation of
the observations into account. We believe that such a mea-
sure would have broad applicability for artificial intelligence
applications that must interpret time-series data.

In summary, we have seen that Prometheus introduces a
number of innovations that respond directly to the issues
outlined in the introduction. These include a representation
for models and background knowledge that support com-
munication with scientists, integration of AND/OR search
through a space of model structures with gradient descent
search to estimate parameters, and incorporation of initial
models and user input to guide revision. However, we have
also seen that this combination of ideas is not sufficient to
support scientists in developing models of dynamic systems.

We need additional research that extends the power and flex-
ibility of our modeling methods to more fully serve the needs
of its scientific users.
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