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SCIENCE AS AN ANOMALY-DRIVEN ENTERPRISE: A

COMPUTATIONAL APPROACH TO GENERATING ACCEPTABLE

THEORY REVISIONS IN THE FACE OF ANOMALOUS DATA

Will Bridewell, PhD

University of Pittsburgh, 2004

Anomalous data lead to scientific discoveries. Although machine learning systems can be

forced to resolve anomalous data, these systems use general learning algorithms to do so. To

determine whether anomaly-driven approaches to discovery produce more accurate models

than the standard approaches, we built a program called Kalpana. We also used Kalpana

to explore means for identifying those anomaly resolutions that are acceptable to domain

experts. Our experiments indicated that anomaly-driven approaches can lead to a richer set

of model revisions than standard methods. Additionally we identified semantic and syntactic

measures that are significantly correlated with the acceptability of model revisions. These

results suggest that by interpreting data within the context of a model and by interpreting

model revisions within the context of domain knowledge, discovery systems can more readily

suggest accurate and acceptable anomaly resolutions.
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1.0 INTRODUCTION

Anomalies drive scientific discovery. In The Structure of Scientific Revolutions, Thomas

Kuhn wrote, “Discovery commences with the awareness of anomaly . . . [and] it closes only

when the paradigm has been adjusted so that the anomalous has become the expected [31].”

That is, when faced with an inexplicable event, scientists conclude that their theory is either

incomplete or incorrect. Then, by concentrating their attention on the anomalous case, the

scientists may discover alterations to their current theory or a new theory to replace the

old. For example, in an earlier work, Kuhn tells how the retrograde motion of Mars and

related anomalies led to a series of major upheavals in Renaissance cosmology [30]. We seek

to create a system that, like Kepler, Copernicus, and others, exploits the discovery potential

of anomalies.

Unlike Kuhn, we engage in computational system building, therefore we must clarify

and limit our definition of “anomaly.” While the term can apply to any unexpected event,

we restrict its usage to either single observations or a collection of similar observations that

contradict a specific theory. For example, when Galileo observed mountains on the moon, he

presented believers in the prevailing theory of celestial bodies with an anomaly. How can a

perfect, crystalline sphere have mountains and ridges? In addition to our specific usage, the

general use of the term “anomaly” refers to unexpected trends in a data set, observations at

the edge of acceptability, and so on. Although these broader extensions of the term identify

future directions of inquiry, we always use “anomaly” in its restricted sense. As we shall see,

this restriction brings with it specific advantages.

Anomaly-driven discovery, including anomaly-driven theory revision, yields benefits not

exploited by general inductive systems (e.g. RL [46], C4.5 [48]). Foremost, the anomaly

pinpoints the error site in the theory. After all, how can we identify an anomalous observation
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if we lack specific expectations? Thus the problem reduces from improving the theory as a

whole to addressing a deviation from a particular belief. That is, anomaly-driven discovery

refines questions such as, “Is the prevailing theory of cosmology correct?” into those like,

“Why does Mars appear to move backwards in the sky at particular intervals?”

As a result of error localization, anomaly-driven discovery produces additional advan-

tages. First, the contested section of the theory lends context to both the observation and

possible remedies. Thus, knowing that, at times, Mars appears to move backwards in the

sky, a scientist can relate this behavior to the planet’s “normal” trajectory as well as the ret-

rograde motion of other planets. As a second advantage, the anomaly constrains the search

for new knowledge. That is, the revised theory must account for all previously explained ob-

servations in addition to the anomalous case. So, the anomaly specifies where to look, what

information to consider, and to a small degree what form the discovery must ultimately take.

As an example of anomaly-driven discovery, consider the identification of the louse’s role

in the transmission of typhus. Before Charles Nicolle’s work, typhus was assumed to be trans-

mitted as most other contagious diseases (i.e., through direct physical contact). However,

Nicolle noticed that in a crowded hospital only certain individuals tended to contract the

disease. More importantly he found that “typhus patients continued to spread infection up

to the point when they entered the hospital waiting-room . . ., [but] they became completely

inoffensive as soon as they had been bathed and dressed in the hospital uniform. [26]” This

geographically based transmission, where patients were contagious in the waiting room but

not contagious once admitted, was anomalous to the general theory of disease transmission.

The discovery of the mechanism of transmission for typhus illustrates the benefits of an

anomaly-driven approach. By identifying an anomalous condition, Nicolle could localize the

fault in the theory. That is, the dominant theory of medicine held that most diseases spread

through individual contact. Nicolle observed that this was not the case with typhus, thereby

localizing the problem to one of disease transmission. Next, both context and constraints

could be identified. The context consisted of the need for a new mode of transmission, the

conditions of the physical locations where typhus spread, and the conditions where it did not.

The constraint was that the mode of transmission had to explain how patients infected with

typhus could suddenly stop being contagious without ignoring how highly contagious the

2



disease can be. Nicolle’s discovery, that typhus was being transmitted by lice and that these

lice were removed after thorough cleaning, repaired the theory, satisfied the constraints, and

made use of the anomaly’s context.

1.1 THE CRITERIA FOR ACCEPTABLE ANOMALY RESOLUTION

Although anomalies identify weaknesses within a theory, not all revisions that they engender

are acceptable. For instance, a revision should repair the fault in the theory, otherwise the

anomaly is not resolved. Additionally, the repair should not cause other faults to appear. And

finally, the repair should be justifiable within the context of the domain. This characteristic

helps prevent cluttering a theory with poorly supported special cases. We claim that for a

revision to be acceptable it must meet these three criteria: rehabilitation, monotonicity, and

defensibility.

1.1.1 Rehabilitation

An anomaly resolution must remove the original contradiction. Whether the removal results

from an alteration of the theory or the discarding of data, this condition must be met. For

example, consider Galileo’s observation of mountains on the supposedly spherical moon. The

most ready resolution of this anomaly presents itself as a claim of methodological error. Using

this approach, Galileo’s opponents cast doubts upon the reliability of the telescope. Here the

data are rejected, and the contradiction disappears. Ludovico delle Colombe chose another

tactic. By conjecturing that the mountains existed beneath a crystalline sphere, he both

saved the original theory and accounted for the data. Again, the contradiction disappears—

regardless of the veracity of the resolution. Finally, Galileo hypothesized that the spherical

nature of the moon was a myth. His claim also resolves the contradiction differing from the

others in its general acceptance by the scientific community.
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1.1.2 Monotonicity

In addition to removing the contradiction, acceptable anomaly resolutions must not degrade

the theory. That is, new anomalies should not arise from old observations once the resolution

is applied. This condition provides a monotonicity constraint. The assumption behind this

criterion holds that the current theory is mostly correct and that the anomaly indicates an

error far from the base axioms. Occasionally this assumption may be revealed as erroneous,

as with the shift from a geocentric to heliocentric model of the solar system, but even these

exceptional instances must account for prior observations.1

1.1.3 Defensibility

Finally, an acceptable anomaly resolution must also be defensible. A revision that can-

not be justified within the context of the current domain must be rejected. For example,

suppose that Nicolle conjectured that the odd pattern of typhus infection resulted from a

natural immunity in those workers inside the hospital. Such an explanation rehabilitates

the contradiction without producing new anomalies. However, support for this revision is

circumstantial. Unless the revision adequately explains why there should be such an odd dis-

tribution of workers within the environment, it is unacceptable. In general, wide acceptance

of a belief should be contingent on the presence of a thorough supporting rationale. Without

such a criterion, we risk reducing our theories to statements of apparent associations and

ad hoc excuses.

1.2 HYPOTHESIS

We claim that anomaly-driven discovery will lead to acceptable revisions not considered by

traditional learning approaches. That is, emphasizing the anomaly, along with its relation-

ship to the data and the original theory, will lead to a larger number of revisions that are

1Sometimes there are exceptions even to this rule where the new theory reduces the scope of the domain.
In such cases, the new theory need not explain those observations now outside of its range. Nevertheless,
those old observations remaining within the theory’s domain must not now be construed as anomalous.
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rehabilitative, monotonic, and defensible compared to approaches that ignore the context

of the anomaly. Additionally, we claim that heuristics can be devised that identify defen-

sible revisions and that these heuristics must employ background knowledge instead of, or

in addition to, syntactic analysis of the revisions. In particular, we believe that relatively

shallow knowledge of the domain will lead to substantial improvement in the ability to assess

the acceptability of a given revision. Finally, we claim that acceptability serves as a more

refined measure of a theory’s generalizability than predictive accuracy. More specifically, the

intersection of accurate and acceptable anomaly resolutions leads to the best revised theory.

We will assess our claims for the acceptability of a revision using the judgment of a domain

expert. In the ideal case, a system employing our heuristics, which we will later clarify, will

produce only acceptable revisions. Therefore the domain expert can choose from a collection

of repairs without sifting through those that are either implausible or irrelevant. The expert’s

success in this task requires the ability not only to rule out unacceptable revisions but also

to determine whether an acceptable revision applies to a meaningful class of anomalies or

serves only to explain away a singularity. The distinction made within this latter task is

beyond the scope of this work.

1.3 METHODS OF RESOLVING ANOMALIES

Although anomalies can point toward new knowledge, they do not always lead to discov-

eries. Work in cognitive science has identified eight responses to anomalous data [6, 9]:

(1) ignoring the data, (2) holding the data in abeyance, (3) maintaining uncertainty about

the data, (4) excluding the data from the theory’s scope, (5) rejecting the data, (6) reinter-

preting the data, (7) altering the periphery of the theory, and (8) replacing the theory. Of

these responses, only (7) and (8) lead to alterations in the theory, while responses 1–4 are

relatively uninteresting as they do not involve any form of explanation. Of those that do

require an explanation, the explanation provided when rejecting the data requires the least

detail. Here the scientist claims that the data were produced from error, random effect, or

fraud and therefore need not be addressed. At the other extreme of explanatory detail, the
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scientist alters a core belief upon which the theory rests. Between these two responses lie

the reinterpretation of data and peripheral alteration of the theory.

When a scientist reinterprets an anomaly, he accepts its validity, but provides an expla-

nation that does not alter the relevant theory. As an example, consider the Allais effect [3],

which has been reproduced with varying success. During a solar eclipse, the oscillation of a

Foucault pendulum deviates slightly from its expected trajectory. One explanation for these

deviations suggests a fundamental flaw in the theory of gravitation. However, other proposed

explanations reinterpret the data so that the anomalous observations no longer contradict the

theory [15]. For example, cooling in the upper atmosphere may result in enough increased

mass to account for the deviations. This explanation reinterprets the data as the product of

a plausible effect that can account for the measured change in gravity. However, if further

observations fail to support the suggested reinterpretations, the theory itself may be altered

or even replaced so that the anomaly will be resolved.

For an illustration of the difference between altering the periphery of a theory and chang-

ing core beliefs, consider astronomy at the time of Kepler. Prior to Kepler’s changes, the

predominant astronomical theories, either the Ptolemaic or the Copernican, employed cir-

cular orbits. To account for any discrepancy between the predicted orbits of the planets

and the recorded data, scientists introduced epicycles—in abundance. That is, the typical

approach to resolving anomalies involved the addition of minor circular orbits that were

centered on larger orbits. These alterations were based on the assumption that planetary

motion is circular.2 Within this context, all inconsistencies had to be accounted for by intro-

ducing new circles into the system. The addition of these new circles exemplifies the concept

of peripheral theory change. In contrast, Kepler’s actions demonstrate the changing core

of beliefs—what Kuhn calls a paradigm shift. By the time that he developed a satisfactory

theory of his own, Kepler had dispensed with circular orbits and epicycles altogether, placing

the planets on elliptical orbits. His new theory shared components from prior astronomical

conceptualizations, but he excised a fundamental assumption to create a more accurate and

parsimonious explanation.

2This assumption was fundamental both intellectually and, perhaps more importantly at the time, reli-
giously.
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Darden’s work goes beyond the list of eight responses as she describes actual strategies for

anomaly resolution [11, 12]. She groups rejection and reinterpretation of the data together,

describing them as methods of “monster-barring,” meaning that when an anomaly can be

explained away, it no longer threatens the theory. However, Darden gives no indication of

how such monster anomalies can be differentiated, prior to successful explanation, from what

she calls model anomalies. Unlike monster anomalies, model anomalies effect change in the

original theory. That is, the explanation of model anomalies requires either an alteration,

addition, or removal of some theoretical component, which Darden defines as a part of the

theory that changes over time (e.g., an equation, a condition). These approaches either

generalize or specialize the theory.3

Generalizing the theory involves adding a new theoretical component or generalizing a

current component. In either case the scope of the theory, which includes all cases that match

the antecedent of at least one rule, expands. For example, consider a rule-based model that

predicts whether an individual has an infectious disease of the lower respiratory system (RS).

Let this model contain the rule, “IF wheezing is present and tachycardia is present, THEN

RS is present.” This component can be generalized by removing one of the conjuncts in the

antecedent. For instance, the generalization, “IF wheezing is present THEN RS is present,”

reduces the number of restrictions to the applicability of the rule. Alternatively, adding the

rule, “IF cough is present, THEN RS is present,” expands the model to cover all cases when

an individual has a cough.

In contrast, deleting or specializing a theoretical component specializes the theory, thus

restricting its scope. To illustrate, consider the model containing the rules, “IF wheezing is

present, THEN RS is present,” and, “IF cough is present, THEN RS is present.” Removal of

the latter rule restricts the theory by preventing it from classifying cases that it previously

could (i.e., when cough is present and wheezing is absent). Similarly, adding the conjunct,

“tachycardia is present” to the antecedent of the former rule also restricts the model. In

particular, patients who are wheezing, but do not exhibit tachycardia may no longer be

classified. Thus both alterations reduce the model’s scope.

3In [11], Darden describes other methods of altering components such as tweaking parameters and propos-
ing the opposite of the failing component. We have limited our discussion to the four common approaches
that are relevant to the current work.
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The version-space approach to inductive concept learning [41] accessibly characterizes the

use of some of these strategies. In this representation, the learner stores two sets of hypotheses

that describe a target concept. For example, let the target concept be the presence of RS. One

hypothesis could state, “IF cough is present, THEN RS is present.” The sets of hypotheses, G

and S, respectively consist of the most general and the most specific descriptions consistent

with all observed data. Therefore, if a new instance matches all members of S, then the

learner classifies it as a positive instance of the target concept, whereas if the instance fails

to match any members of G, then the case is classified as a negative instance.

To update its concept description, the version-space learner applies anomaly-resolution

strategies when given a new training example. Returning to the RS domain, where all the

concept descriptions indicate an infection in the lower respiratory system, let G contain

the description, “cough is present,” and S contain, “dyspnea is present and cough is present.”

When it incorrectly classifies an example, the learner will react in one of two ways. A positive

example causes the learner to specialize G by removing those descriptions that fail to match

the new instance. Thus, if the observed patient lacks a cough, the description, “cough is

present,” will be removed from G. At the same time, S will be updated by generalizing

all hypotheses that exclude the case. So, the example description becomes, “dyspnea is

present.” Negative examples alter the boundaries of G and S in similar ways. Using the

original description of the concept, suppose now that the patient does not have respiratory

syndrome, but does exhibit both cough and dyspnea. Now the description in S, “dyspnea is

present and cough is present,” will be excised from the set so that no member of S matches

a negative example. In addition, the system specializes the hypothesis in G so that it reads,

“cough is present and dyspnea is absent,” thereby ensuring that the new description will fail

to match the negative example. Thus misclassified positive and negative examples lead to

revisions that remove the contradiction.

As shown in the examples above, the version-space approach to learning involves both

specialization and generalization of the theory itself and of the descriptions composing the

theory. Removal or specialization of descriptions in G specializes the theory. In the first case,

the learner reduces the restrictions to being a negative instance, and in the second case, the

specialization increases the difficulty of being a positive case (i.e., more of the case’s observed
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values must match). In contrast, the removal or generalization of descriptions in S generalizes

the theory. That is, fewer members of S and fewer conditions imposed by those members lead

to fewer requirements for an observation to match this lower boundary and to be classified

as positive.

Version spaces serve as a starting point for understanding how Darden’s strategies can

be implemented. Though limited in utility the formalism shows that anomalies can play

a crucial role in developing our knowledge of concepts. From here, we can explore further

system implementations to understand how anomalies drive learning and how resolutions

can be identified.

1.4 THEORY REVISION SYSTEMS

Most of the relevant research on anomalies in artificial intelligence falls under the category

of theory revision. Theory revision systems consist of programs that alter a knowledge base

when faced with contradicting data. These systems tend to be autonomous, and primarily

alter symbol-based theories. While differing in structure, they each embody six primary

tasks of the revision process:

1. anomaly detection

2. fault localization

3. revision generation

4. revision assessment

5. revision application

6. expectation evaluation

Although all incremental learners update their beliefs, TEIRESIAS [14] was one of the

first systems to address the six tasks of theory revision in detail. Working with the program,

a domain expert presents cases and evaluates the resulting classification. If the system

produces an incorrect (i.e., anomalous) prediction, the expert queries the program about its

rationale to detect the fault in the knowledge base. The expert and system then collaborate
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to generate an anomaly resolution, with the expert having the final say in its suitability.

Application of the repair can consist of a complex combination of rule additions, deletions,

and alterations, the result of which TEIRESIAS evaluates within the context of its own

expectations. The program communicates any unmet expectations to the expert, who then

determines whether and how they should be resolved.

EITHER [42] contrasts with TEIRESIAS in that it automates the tasks of theory revision.

Instead of relying on a domain expert to pose cases and evaluate the output, the program

examines a set of supervised data, identifying anomalies as cases where the prediction fails

to match the observed outcome. When EITHER fails to prove that a datum belongs to

the observed class, its abduction component backtracks from the example to determine the

facts required for a correct prediction. These facts are collected into sets that indicate how

to generalize the rules in the theory. After creating the generalizations, or after incorrectly

classifying a datum, the program generates, assesses, and applies its own repairs. Unlike

TEIRESIAS, where these steps were distinct, EITHER performs them atomically due to the

strict constraints on its search. In general, the system applies minimal alterations to the

original theory until it correctly classifies all the given data. Since it possesses no meta-level

expectations (as TEIRESIAS does), which is typical of automated theory revisers, EITHER

does not address the final step of expectation evaluation.

EITHER and its successor [5] are representative of automated revision systems. Be-

ginning with a theory, these programs identify anomalies by locating either unclassified or

incorrectly classified data. While most systems address both cases, a few specifically target

the former [10, 21, 62]. Methods for fault localization, which depend highly on the represen-

tation of the original theory, often emphasize abduction, although some programs employ

other means. For example, PTR [29] represents the domain theory as a graph and adjusts

edge weights to identify the point of revision while RAPTURE [38] employs backpropagation

to alter a network representation of the rules. As with EITHER, automated revision pro-

grams combine the fault localization task with the generation, assessment, and application of

revisions. That is, given an anomaly, these programs search for and apply the first minimal

alteration that they find.
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FORTE, STALKER, and CLARUS serve as exceptions to the minimal-alteration ap-

proach to revision assessment. FORTE [49] considers a large number of revisions at once,

selecting the one that resolves the most anomalies in the data. The process of evaluating

the theory, identifying anomalies, and applying revisions then repeats until all anomalies are

resolved. STALKER [8], on the other hand, examines the anomalies individually. For each

anomaly, the program generates all possible revisions, applies each revision to the original

theory, and counts the number of examples that the altered theory correctly classifies. The

program then applies the revision that classifies the most examples without introducing new

anomalies. CLARUS [7] differs from both FORTE and STALKER in that it introduces

semantics into its performance metric. Instead of relying on predictive accuracy alone, the

system also attempts to minimize linguistic heterogeneity. That is, unless substantial gains in

predictive accuracy can be obtained, CLARUS prefers to introduce predicates using familiar

terms and concepts. To determine familiarity, the program examines linguistic connections

using WordNet [17].

HYPGENE and KEKADA are two more theory revision systems of note. Unlike the

others, HYPGENE [28] takes a domain specific approach to theory revision, operating on

models of gene regulation mechanisms. This system extends the scope of the revision pro-

cess, considering alterations in experimental conditions as well as changes to the knowledge

base. KEKADA [33] couches revision within a closed-loop scientific reasoner. That is, the

program not only analyzes data, but also suggests experiments, interprets results from those

experiments, and updates its knowledge or working hypothesis to reflect its findings. These

two systems emphasize the importance of theory revision to scientific discovery and indicate

directions in which the list of primary tasks can be extended.

Apart from CLARUS and KEKADA, the systems mentioned above assess and select

revisions based upon a criterion of conservatism. That is, they attempt to enact the minimal

possible change to the original theory that accounts for the anomalous data. For instance, a

conservative system would add another epicycle to the Ptolemaic model as opposed to placing

the Sun at the center, or, in terms of a version-space learner, a single condition would be

added or removed from a hypothesis even though both data and domain knowledge may

support a more drastic change. In principle, this strategy reduces future backtracking due
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to poor choice, thereby reducing risk. However, a conservative mindset could not produce a

heliocentric model from a geocentric one.

Unfortunately, conservatism not only keeps us from new ideas, but also fails to prevent

needless backtracking as it promises. The number of data required to fully expresses the

feature space increases exponentially with the number of features. For instance, the space

defined by two binary features can be completely covered using four cases. However, given n

features, full exploration of the space of possible alterations requires 2n data. Data sets large

enough to account for the size of their feature space tend to be rare. For example, in scientific

domains such as biology, data sets extracted from DNA microarrays possess thousands of

features, but usually contain fewer than one hundred observations. This relatively sparse

data set can support several equally conservative rehabilitative and monotonic revisions.

Choosing among these revisions becomes arbitrary, and guarantees of safety in minimal

change fail to hold.

Both CLARUS and KEKADA employ strategies to overcome the weakness of con-

servatism as a selection criterion. By considering semantic relationships among features,

CLARUS strengthens its notion of conservatism. That is, the system avoids knowledge un-

related to the portion of the theory under revision. However, as the authors note, lexical

tags constructed manually lead to better performance than that obtained from the semantic

information gathered from WordNet. KEKADA’s approach involves the inclusion of several

domain-specific and domain-general heuristics that further constrain the set of admissible

revisions. This program’s major limitation lies in the ad hoc nature of these heuristics.

Specifically, the description of KEKADA lacks a detailed analysis of the contributions of

each heuristic, likely due to their loose, yet tangled, structure within the program. Since

we would like to explore heuristics such as those used by KEKADA and CLARUS, and

since KEKADA provides a poor test bed, we designed a system that would better facili-

tate our goal.

Revisiting the six components of theory revision, we introduce our system, Kalpana4,

to explore aspects ranging from anomaly detection to revision assessment. For Kalpana,

anomaly detection occurs, not unlike the systems above, when it makes an incorrect clas-

4Kalpana is a Sanskrit word that roughly translates to “inventing” or “fashioning.”
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sification. Since the program’s models are based on single-step classifiers (i.e., the chain of

reasoning for a classification consists of a single IF-THEN rule), fault localization consists of

identifying a classifier that incorrectly matches the observation. Revision generation occurs

in a manner similar to that of STALKER. In particular, Kalpana generates multiple revisions,

each consistent with all noncontradictory observations, in response to each anomaly. These

revisions may serve as hypotheses for future experimentation or as indicators of erroneous

data. The program then assesses these revisions based on syntactic and semantic cues.

1.5 ENSURING ACCEPTABLE REVISIONS

With Kalpana, we hope to address one particular limitation of prior theory revision sys-

tems: the identification of defensible hypotheses. Since it is a theory revision system, any

anomaly resolutions produced by Kalpana satisfy our criterion of rehabilitation. In addition,

the program enforces monotonicity by comparing all revisions to the noncontradictory data

available. However, we do not require the system to produce a revision for every anomaly.

Instead we ask Kalpana to examine those revisions that are produced and to determine which

of those are defensible. To this end we explore several approaches to defensibility, some of

which have been considered in previous research.

Of the systems described in Section 1.4, few attempt to judge their revisions in a manner

related to defensibility. To this end, CLARUS [7] measures the distance in a semantic

network between new terms and those present within the theory. This strategy requires

the assumption that semantic distance correlates well with the plausibility of the revisions.5

Intuitively, CLARUS expects researchers to prefer those revisions that employ language

similar to what already exists within the theory. Although we expect that defensible revisions

will contain words or features well-used within the theory’s domain, and we incorporate

a similar measure in Kalpana, semantic distance alone fails to capture other important

characteristics of defensibility.

5The approach taken by CLARUS relates well to Nelson Goodman’s concepts of entrenchment and pro-
jectibility [24], which we discuss in Section 5.2.2.
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Pazzani, a coauthor of the CLARUS system, and colleagues [44] have explored another

measure related to defensibility. In particular, they found that their rule-learning system pro-

duced classifiers that contradicted expert knowledge. The domain experts evaluating these

classifiers had difficulty understanding and accepting the contradictory rules. As an exam-

ple, Pazzani cites a learned rule for classifying normal patients and those with Alzheimer’s

disease. This rule states, “If the years of education of the patient is > 5, and the patient

does not know the date and the patient does not know the name of a nearby street, then

the patient is normal.” In this statement, the italics indicate the two conjuncts more often

associated with the alternative classification.

To ensure that only those features normally associated with a consequent appear in the

antecedent of a rule, the authors introduced monotonicity constraints. These constraints dif-

fer from our definition of monotonicity in that they introduced semantics, in essence giving

another measure of defensibility. Thus while CLARUS attempts to ensure the meaningfulness

of newly introduced terms, monotonicity constraints ensure that newly asserted knowledge

does not violate background knowledge relevant to the theory. To this end, the rule learner

was modified to understand expert-specified relationships between attribute values and clas-

sifications, such as the association of a patient’s forgetfulness with the presence of Alzheimer’s

disease. Then, when building the classifier, the system can avoid features in violation of the

stated relationships, with the exception that substantial evidence can override a constraint.

As evidence of the generality of monotonicity constraints, consider the use of fact po-

larization in predicting legal outcomes. Lawlor [36], in his effort to define a science of law,

suggests that legally relevant facts should be considered with respect to the effect of their

presence on a court’s decision. For instance, in a trade secrets case, the fact, “product easy to

reverse engineer,” would be negatively polarized for the plaintiff, meaning that its presence

should only be used in predictors favoring the defendant. Due to the apparent usefulness of

these types of constraints, we added them to the heuristics for defensibility that we explore

with Kalpana.

Apart from the work by Pazzani and his colleagues, most measures of a revision’s ac-

ceptability are syntactic in nature. These syntactic measures are tied more closely to formal

learning theory than to the inherently semantic notion of defensibility. The two most fully
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explored syntactic approaches emphasize conservatism and simplicity. Conservatism arises

primarily in the area of belief revision, the logical basis of which derives from work by

Alchourrón, Gärdenfors, and Makinson [2] (the AGM theory). Unfortunately, in practical

application, equally conservative revisions are plentiful even when we constrain which alter-

ations we will consider. As for simplicity, Kolmogorov complexity [57] influences many of

the measures. However, Kolmogorov complexity requires a fixed terminology to avoid Nelson

Goodman’s paradox of simplifying a theory by introducing single terms that are artificial

constructs of many other terms [23]. That is, we can always generate syntactically simpler

hypotheses by altering our vocabulary, thereby hiding the complexity of the data with a

smaller number of terms.

1.6 OUR APPROACH

In Kalpana we introduce measures of defensibility related to the work by Pazzani and col-

leagues as well as newly developed measures. We base our collection of measures on the six

virtues of hypotheses discussed by Quine and Ullian in Web of Belief [47]:

1. conservatism—preservation of prior beliefs

2. modesty—use of familiar terminology

3. simplicity—lack of unnecessary information

4. generality—applicable to a wide range of events

5. refutability—capable of being disproved

6. precision—statement of clear, distinct boundaries

Kalpana accounts for the final three virtues implicitly. A general-to-specific search leads to

the most general revision that meets all the constraints of the system. Additionally, each

anomaly resolution is encoded as an IF-THEN statement with testable conditions, thereby

meeting the requirement of refutability. And finally, the precision of the revisions derives

from external constraints on the values allowed within the revisions themselves.
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Though the last three virtues are implicit within Kalpana’s design, we explicitly imple-

mented the first three. Kalpana’s measure of conservatism relates closely to Pazzani’s mono-

tonicity constraints. Specifically, expert-provided knowledge enables the system to prefer

revisions consistent with prior beliefs. Modesty, which resembles Nelson’s Goodman’s notion

of projectibility [24], keeps the program from suggesting unlikely relationships. For instance,

a claim that subluxations caused a patient’s pneumonia would be immodest. In a sense,

CLARUS sought modest revisions by limiting the terms available to a semantically related

subset. And finally, simplicity should keep the system from forming a theory by memorizing

the data. By using these virtues as guidelines, we have worked to endow Kalpana with the

knowledge required to recognize acceptable revisions to theories.

To explore anomaly-driven theory revision, we performed three sets of experiments. First,

we tested whether an anomaly-driven approach would lead to the production of acceptable

revisions. Second, we explored the effect of applying acceptable revisions to a theory in need

of repair. And third, we developed and tested measures of defensibility to better identify the

acceptable revisions. Before giving the results of these experiments, we introduce Kalpana’s

architecture and provide an annotated example of the system’s performance.
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2.0 KALPANA: THE PROGRAM

We built Kalpana to test our hypotheses while exploring the practice of anomaly-driven

theory revision. As with most systems, Kalpana expects input and produces output. The

input consists of data, a model,1 and background knowledge. The program outputs a col-

lection of anomaly resolutions paired with acceptability ratings. After describing the format

of Kalpana’s input and output, we describe the respiratory syndrome (RS) domain and give

an annotated example of Kalpana operating within that domain.

2.1 INPUT AND OUTPUT

Kalpana expects the data to be represented as labeled feature vectors. A feature vector,

and hence a datum, consists of one or more values for some preselected attributes, which

may reflect either an observation (e.g., age, temperature) or a theoretical concept (e.g., body

mass index, density). In the latter case, the values are calculated in advance and are repre-

sented no differently from observed values. All the values taken together constitute a single

case. For example, consider the vector [(color, red), (has rings, no), (has water, no), (oxy-

gen rich atmosphere, no) (supports life, no)], which could describe the planet Mars. The first

three attributes are directly observable, whereas supports life and oxygen rich atmosphere

are theoretical constructs.

1Little terminological conformity exists within the machine learning community when it comes to the
terms “theory” and “model.” However, some choose to reserve the word “theory” for explanatory knowledge
structures. While the collection of sentences used within our system may have explanatory power, we would
also like to consider statements that are solely descriptive. Thus, we opt for the use of the less contentious
term “model.”
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Table 1: Three truncated data from the respiratory syndrome domain. In the data set used

for our experiments, 65 attributes were included in the feature vector for each of 282 cases.

Data

ID Cough Wheezing . . . Pharyngitis Respiratory Syndrome (RS)

1 present absent . . . absent absent

2 present absent . . . present absent

3 absent present . . . present absent

Kalpana explores the data in the context of a model, which consists of a collection of

statements describing a set of target concepts. These statements or rules are represented as

propositional Horn clauses where the positive term always indicates the target classification.

Thus the model contains no intermediary concepts. For example, we might have a rule of

the form, “IF oxygen rich atmosphere is no and has water is no, THEN supports life is no,”

where the ample presence of oxygen determines whether life can exist. This restriction may

lead to models with both more and longer rules, but it does not alter which classifiers can

be described by the modeling language.

In addition to the collection of rules, a model consists of a method for resolving internal

conflicts. That is, if two rules predict different classes for a datum, examining the partial

ordering of the rules will determine that case’s final class.2 Kalpana expects the rules in the

model to be partially ordered by specificity. So, given two clauses such that the antecedent

of the first is a direct subset of the antecedent of the second, the consequent of the second

will be asserted. Or, more intuitively, a direct specialization of a particular rule defines an

exception to that rule. For instance, if a datum matches the antecedents of both“IF headache

is present, THEN RS is absent” and “IF headache is present and pneumonia diagnosis is

present, THEN RS is present,” then the model will classify the datum using the latter,

2Apart from the rule conflicts resolved by the imposed partial ordering, Kalpana assumes that the rules
classifying a particular case all make the same prediction.
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more specific rule. If an internal conflict cannot be resolved, which occurs when one of the

conflicting rules is not a direct subset of the other, then the case becomes an anomaly.

Anomalies can surface in two ways given the described model representation.3 Either a

non-empty set of rules predicts the incorrect class for a datum, or two or more sets of rules

assign mutually exclusive classes to the datum such that the conflict cannot be resolved

using the partial ordering of rules. For example, consider the data in Table 1 and the model

composed of the following four rules:

1. IF cough is present, THEN RS is present.

2. IF wheezing is present, THEN RS is present.

3. IF pharyngitis is present, THEN RS is absent.

4. IF wheezing is present and pharyngitis is present, THEN RS is absent.

The first datum is anomalous because the sole applicable rule, Rule (1), gives an incorrect

classification. The same rule identifies the second datum as an anomaly. Although Rule (3)

produces the correct classification, the model lacks a partial ordering that would allow us to

favor Rule (3) over Rule (1). In contrast, Rule (2) incorrectly classifies the third datum, but

since Rule (4) directly specializes the more general rule and produces the correct classifica-

tion, this datum is not anomalous. Anomalies such as the first and second cases lead Kalpana

to specialize all the overly general rules predicting the incorrect class. So, to rehabilitate the

model with respect to the second datum, Kalpana would produce an exception rule of the

form, “IF cough is present and pharyngitis is present, THEN RS is absent.”

In addition to data and a model, Kalpana accepts background knowledge. If present,

this background knowledge aids in judging the acceptability of all generated revisions. In

our current implementation, Kalpana requires both the declarative knowledge and the means

for interpreting that knowledge. For instance, we can state which attributes, when present,

normally indicate the presence of respiratory syndrome. We must also provide a function that

produces an exception-rule’s acceptability-score based on the presence of these attributes.

For example, the knowledge may be that an emergency department diagnosis of pneumonia

is highly correlated with the presence of respiratory syndrome. So that Kalpana can apply

3We do not assume that a model classifies all the data that it sees. Though some data may remain
unclassified, Kalpana does not consider them anomalous.
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Anomalies Resolved : (237)
Original Rule:
(SPUTUM is PRESENT) implies (RESPIRATORY SYNDROME is PRESENT)

Exception Rule:
(FEVER is ABSENT) and
(DYSPNEA is ABSENT) and
(COUGH is PRESENT) and
(CHEST PAIN is PRESENT) and
(SPUTUM is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)

Method of Generation: Method of Difference: Compared to all data
Semantic Defensibility: 1.0
Syntactic Defensibility: 0.38

Figure 1: An example revision produced by Kalpana.

this knowledge, we would provide a function that gives a low score to rules similar to “IF X

and a diagnosis of pneumonia is present, THEN RS is absent,” where X stands for zero or

more conjuncts.

Once provided with the described input, Kalpana produces a collection of revisions, which

are sorted by both the anomalies that they resolve and their acceptability. Figure 1 shows an

example revision. Kalpana first prints a list of the data that the revision resolves (e.g., datum

237) followed by the overly general rule responsible for the anomaly. Next, the program lists

the anomaly resolution, the generation heuristic that produced it, and the revision’s semantic

and syntactic defensibility. In this case, we see that the rule“IF sputum is present, THEN RS

is absent” has been specialized to include references to fever, dyspnea, cough, and chest pain

(other revisions include other ways of specializing the original rule). Chapter 3 describes

the various generation heuristics, and Chapter 5 details the functions that produced the

defensibility scores. In both cases, a higher score indicates a more defensible revision, with

the semantic score ranging freely over the reals and the syntactic score falling between zero

and one.
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2.2 EXAMPLE

For this example, and for subsequent experiments, we used medical data gathered from emer-

gency department (ED) reports. Using these reports, we intend to develop a model of RS,

which serves as a general class encompassing disease in the lower respiratory system. Such

a model can be used to detect localized outbreaks of related illnesses. For instance, bioter-

rorist attacks (e.g., anthrax dissemination) or natural causes (e.g., severe acute respiratory

syndrome), can lead to an increase in lower respiratory complaints. The cause for these com-

plaints may initially be misdiagnosed due to its rare or unknown nature, but by grouping

the related cases under a more general class, a previously hidden trend may surface, leading

to quicker response. Since the resulting model should be both sensitive and defensible, this

task fits well with our goals for Kalpana.

2.2.1 Input

The data used in this study were extracted from 282 free text ED reports. Due to the

relatively low prevalence of respiratory disease, even in an ED environment, these reports

were fortified with positive examples. Half of the reports were randomly selected from a

collection of cases describing a respiratory ailment, while the other half were randomly taken

from nonrespiratory cases. The presence of an International Classification of Diseases, 9th

Revision [1] diagnostic code (ICD9 code) indicating a respiratory ailment distinguished the

sets of cases. Of the 282 data, 190 were used for training purposes with the remaining 92

set aside for testing. Sixty-five relevant attributes were identified by Dr. John Dowling, an

expert in infectious diseases, through his examination of a separate set of reports. A separate

physician then read through the reports and assigned values for the selected attributes. In

addition, this physician as well as two others assessed whether the patient described by the

reports was a positive case for respiratory syndrome.

The 65 attributes selected by our domain expert, which are listed in Table 2, belong

to four classes: signs and symptoms, physical findings, chest radiograph findings, and diag-

noses. The first class consists of patient-reported complaints such as cough, dyspnea (diffi-
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culty breathing), and headache, whereas the attending physician observes the attributes in

the second class. Chest radiograph findings come from descriptive reports of patient x-rays,

which may indicate the presence of pneumonia, a mass within the lungs, or other features,

and the diagnoses record the ED physician’s classification of the specific case given limited

exposure to the patient. The diagnosis category includes both respiratory and nonrespira-

tory conditions.

When extracting features from the text reports, a physician assigned nominal values

to each of the attributes. In particular, he marked attributes as absent when the report

explicitly listed them as such and missing when they were not mentioned. Additionally,

those attributes listed within the report as present were labeled present for physical and

chest-radiograph findings, and one of acute, chronic, or indeterminate for diagnoses, signs,

and symptoms. For the purposes of this study, an acute condition must be present for

less than two weeks, otherwise the condition is labeled as chronic. When the physician

could not determine the duration of a condition from the ED report, he labeled the attribute

indeterminate. To reduce the risk of overfitting, we made the attributes binary by considering

present, acute, chronic, and indeterminate features to be present, and both absent and

missing features to be absent.

To determine the target classification of each case, we merged the ratings of three physi-

cians. After reading the original ED reports, these physicians labeled each case as acute,

chronic, or absent with respect to RS. As with the core features, we interpreted both acute

and chronic to indicate presence, leaving us with two mutually exclusive concepts. To pro-

duce a gold standard, we used the majority opinion of the three physicians. So, a case rated

as acute by one physician, chronic by a second, and absent by a third is considered present.

Figure 2 shows one simple model used for this example. (We introduce other models

later.) The antecedent of each rule consists of a feature that is positively correlated with

the consequent. We applied this model to the training data and removed any contradictions,

which left us with 153 observations. We then injected four known anomalies into this data

set and used it, along with the model, as input for Kalpana.

In addition to data and a model, we provided the program with background knowledge

so that it could calculate the defensibility of its revisions. We compiled the relevant in-
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• IF cough is present, THEN RS is present.

• IF wheezing is present, THEN RS is present.

• IF sputum is present, THEN RS is present.

• IF a positive pneumonia x-ray is present, THEN RS is present.

• IF dyspnea is present, THEN RS is present.

Figure 2: M1: A simple model of respiratory syndrome.

formation, described in Chapter 5, from a two hour directed discussion with our domain

expert. In short, the collected knowledge addressed three of the virtues of hypotheses men-

tioned in Section 1.6: conservatism, modesty, and simplicity. Kalpana combines individual

measures of these virtues into a defensibility score with a higher value indicating a more

defensible revision.

2.2.2 Output

Kalpana produced 12 revisions for the 4 anomalies. Figure 3 shows two of these revisions

while Appendix A lists the entire set. When reporting a revision, the program first gives the

list of resolved anomalies followed by the original rule upon which the revision was based, the

revision itself, the method used for generating the rule, and two scores of defensibility. For

instance, the first revision in Figure 3 resolves the anomaly with case number six. This datum

had been incorrectly classified as having RS due to the presence of dyspnea. By searching

for differences between the anomaly and those positive cases of RS correctly classified by

the model, Kalpana determines that the presence of acute coronary syndrome justifies an

alternative consequent. The resulting rule has a semantic defensibility score of 1.5 and a

syntactic score of 0.6, both of which are the highest values out of all 12 revisions.

Once Kalpana produced the revisions, we sent truncated versions containing only the

anomalies resolved, the original rule, and the exception rule to our domain expert. He

deemed both revisions in Figure 3 acceptable. For the first, he gave the reason, “Acute
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coronary syndrome explains dyspnea,” and for the second he wrote, “Musculoskeletal chest

injury explains dyspnea,” with the implication that the injury caused the chest tenderness.

Here the use of the word “explains” captures an intended interpretation of these anomaly

resolutions. That is, although the rules produced by Kalpana merely describe the data, their

connection to the expert’s knowledge of causation within the domain gives them explanatory

power. Thus the new features explain away the features that normally indicate the incorrect

class. In particular, dyspnea alone signifies the presence of RS. However, when acute coronary

syndrome causes dyspnea, the patient’s difficulty breathing has an alternative cause that

effectively nullifies it as evidence of RS.
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Anomalies Resolved : (6)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)

Exception Rule:
(ACUTE CORONARY SYNDROME is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)

Method of Generation: Method of Difference: Compared to data of the originally assigned class
Semantic Defensibility: 1.5
Syntactic Defensibility: 0.6

Anomalies Resolved : (7)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)

Exception Rule:
(CHEST TENDERNESS is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)

Method of Generation: Method of Difference: Compared to data of the originally assigned class
Semantic Defensibility: 1
Syntactic Defensibility: 0.6

Figure 3: Example revisions produced by Kalpana.
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3.0 GENERATING RESOLUTIONS TO ANOMALIES

To test whether an anomaly-driven approach leads to the production of acceptable revisions,

we designed a generator of model revisions. As input, the generator takes both data, in

the form of previously classified feature-vectors with noisy records and missing values, and a

model, which consists of a disjunctive set of single-step classifiers in propositional Horn clause

form (see 2.1). We assume that continuous attributes have been sectioned into intervals

or replaced with nominal values during the generation of the original model. To resolve

contradictions within the model, direct specializations (i.e., exception rules) have priority

over their more general base rules (see p. 18).

The revision generator begins by identifying anomalies, which are contradictions between

the data and the model. Once Kalpana identifies the anomalies, it partitions the data into

subsets that reveal salient aspects of the anomalies. Then the program searches for both

differences between the anomaly and subsets of nonanomalous1 data and similarities among

specific partitions of anomalies. In each case, the generator applies versions of John Stuart

Mill’s methods of induction [39], producing zero or more revisions for each anomaly. Finally,

Kalpana outputs the resulting revisions along with an evaluation based on our criteria of

acceptability, with rehabilitation and monotonicity being strictly enforced.

1We coin the distinction of nonanomalous (versus anomalous) data to refer to data that are wholly
consistent with a specified model.
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3.1 IMPLEMENTATION

3.1.1 Foundation

To generate explanations of anomalous data, Kalpana applies modifications of old inductive

principles. In his classic work on the scientific method, John Stuart Mill [39] identified four

methods of induction that have been rediscovered and recast numerous times2. Our work

concerns the first two methods: the method of agreement

“If two or more instances of the phenomenon under investigation have only one circumstance
in common, the circumstance in which alone all the instances agree is the cause (or effect)
of the given phenomenon”

and the method of difference

“If an instance in which the phenomenon under investigation occurs, and an instance in
which it does not occur, have every circumstance in common save one, that one occurring
only in the former; the circumstance in which alone the two instances differ is the effect, or
the cause, or an indispensable part of the cause, of the phenomenon.”

In a feature vector representation, a “circumstance” is an attribute-value pair, or feature.

Using the method of agreement, we ask how each anomaly resembles specific subsets of other

anomalies, and using the method of difference we ask how each anomaly differs from various

subsets of nonanomalous data. By using Mill’s methods to guide our revision generators,

and by applying the generators to subsets of data defined by the anomaly, we conjecture

that acceptable revisions will result.

3.1.2 Method of Agreement

We based the first generator for revisions on the method of agreement. Strict application

of this method requires a researcher either to record a complete description of the universe

for each datum or to ensure that the subset of recorded features captures the complete

set of causally relevant events or properties—both of which are impossible to meet. The

former option requires complete state knowledge of the universe, whereas the latter requires

2While we recognize that Mill’s methods are overly simplistic, we believe that they provide a useful
starting point for any work in explanation.
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omniscience about the studied phenomenon. Therefore, to make progress in the process of

induction, we assume that the researcher records at least some of those features constituting

the known and suspected causes of the studied phenomenon (or more accurately, that the

researcher has selected those features with a high prior probability of predicting or influencing

the outcome of the experiment). This assumption does not claim that all relevant features

are present or conversely, that all present features are relevant, just that the researcher

does not purposefully sabotage the learning system. With this assumption in mind, we set

the phenomenon or class to be studied to “anomaly” and explore the causes by asking the

following questions:

A1. How is this anomaly similar to other anomalous data?

A2. How is this anomaly similar to other anomalies with the same observed outcome?

A3. How is this anomaly similar to other anomalies incorrectly classified by the same rule?

A4. How is this anomaly similar to other anomalies incorrectly classified by the same rule

that share the same observed outcome?

Each of these four questions requires the existence of multiple anomalies, and in all

but the first case, the anomalies under comparison must have aspects in common apart

from being an anomaly. With Question A1, Kalpana attempts to determine how the new

datum resembles prior observations that are also anomalous. Finding similarities in A1 can

be understood as an attempt to create a classifier for the concept “anomalous” using only

positive examples. Question A2 limits the domain of the first question to those anomalies

that with the same observed class as the anomaly under question. For example, Kalpana

might compare all anomalies positive for respiratory syndrome (RS). The next question in the

list implies that a particular classifier may, by being too general, cause all the anomalies. For

instance, consider a set of anomalies grouped by the rule, “IF wheezing is present, THEN RS

is present.” If each member of the set had the feature “asthma is present,” (not an RS in our

case), then the anomalies could be resolved with the exception rule, “IF wheezing is present

and asthma is present, THEN RS is absent.” Finally, Question A4 significantly restricts the

subset of anomalies under consideration to the intersection of the data satisfying Questions

A2 and A3. In the context of the previous example, we would require the anomalies to
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Figure 4: The relationships among subsets of data as defined by Questions A1–A4.

all be incorrectly classified by the rule about wheezing and be negative for RS (a trivial

requirement in a dichotomous domain). Figure 4 displays the graphical relationship among

the subsets of data defined by these questions.

To answer questions A1–A4, we define agreement, or similarity, to be a function of

the features shared among the anomalies3. In particular, determining how two cases agree

involves collecting the set of features that they have in common. This approach resembles

the behavior of a specific-to-general concept learner. That is, if an entire set of anomalies

shares the same feature, such as the presence of a cough, then that feature may indicate the

cause of anomaly. While Mill’s method of agreement specifies that we must find a single

circumstance to imply causality, identifying all similarities leads to a revision that may be

pared down using other knowledge or methods.

The revision generator presented in Figure 5 begins by identifying the pool of features

common among the current group of anomalies (see Appendix B.4 for pseudocode describing

3Although we use a function that emphasizes matching features, others may wish to define similarity
using a different function.
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Method-of-Agreement(anomalies, data):
// remove the anomalies from the rest of the data
nonanomalies = data - anomalies
// collect all features shared by the group of anomalies
pool = shared-features(anomalies)
// initialize a list of revisions
revisions = [ ]
// separately consider each anomaly
for each a in anomalies
// consider each rule that incorrectly classifies the anomaly
for each i in (incorrect-classifiers(a))
// create the root revision from the antecedent of the
// incorrect classifier and the correct classification of
// the anomaly
r = create-root(antecedent(i), class(a))
// add all the features that keep the new revision from
// creating any new anomalies
push(necessary-features(r, pool, nonanomalies),

antecedent(r))
// while the new revision continues to create new anomalies
// and there are features that the program can use to
// specialize the revision
while (overly-general(r, nonanomalies) and

features-left(pool, r))
// add an unused feature that best separates the anomaly from
// nonanomalous data incorrectly classified by the current
// revision
push(best-separator(r, pool - antecedent(r), nonanomalies),

antecedent(r))
// push the resulting revision onto the list
push(r, revisions)

return revisions

Figure 5: The algorithm for Kalpana’s method of agreement generator.
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the nontrivial subprocedures). Kalpana defines these groups using Questions A1–A4. For

instance, suppose that the program identifies several anomalies, one of which contradicts

the rule, “IF wheezing is present, THEN RS is present.” Four groups of anomalies will be

created: one composed of all the anomalies, a second composed of all the anomalies with RS

absent, the third consisting of all anomalies with wheezing present and RS not present, and

the fourth with all anomalies where wheezing is present and RS is absent. Since the target

class in the RS domain is dichotomous, the third and fourth groups will be identical.

Next, the generator creates revisions for each incorrect classifier of an anomaly. So if the

anomaly given above were also misclassified by the rule, “IF cough is present, THEN RS is

present,” the program would address this contradiction as separate from the one related to

wheezing. When creating the revision, Kalpana begins with a root rule, which is unique for

a specific anomaly–incorrect classifier pair, composed of the incorrect classifier’s antecedent

and a consequent that matches the anomaly’s observed outcome. For instance, the root

rule for the wheezing example would be, “IF wheezing is present, THEN RS is absent.”

The conflict resolution mechanism that we chose stipulates the form of this root because

it requires exception rules, which are direct specializations of the incorrect classifiers, to

resolve contradicting predictions. To create direct specializations, the program extends the

consequent of the root revision with features from the pool.

If the nonanomalous data contain true positives for the original classifier, the root revision

will introduce new anomalies, requiring further refinement to meet the monotonicity criterion.

Refinement of the root revision begins with the identification of all necessary features within

the pool of common features, where a necessary feature uniquely prevents the root revision

from classifying a nonanomalous datum. To identify the necessary features, Kalpana creates

one rule for each feature in the pool, such that the antecedent contains every feature from

the pool except for that one. If the resulting revision incorrectly classifies a previously

nonanomalous datum, then the program considers the missing feature to be necessary. For

example, if the pool contains the features“asthma is present”and“cough is present,”Kalpana

will form the rules, “IF wheezing is present and asthma is present, THEN RS is absent,”

and, “IF wheezing is present and cough is present, THEN RS is absent.” If the latter rule
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produces a new anomaly (and the former does not), then“asthma is present”will be regarded

as necessary.

After Kalpana adds all the necessary features to the antecedent of the root revision, the

resulting rule can still be overly general. That is, the revision continues to produce contra-

dictions in the nonanomalous data. When this happens, the agreement generator creates an

order among the remaining features in the pool based upon the number of prevented contra-

dictions. While the exception rule remains overly general, Kalpana selects unused features

that best distinguish the anomaly from the nonanomalies from the pool, adding them to the

rule’s antecedent. If the pool of features is exhausted before the monotonicity criterion can

be met, the revision as a whole is discarded.

3.1.3 Method of Difference

Our final two revision generators implement the method of difference. As with the agreement

generator, we assume that the researcher records some, but not necessarily all, relevant

features. Additionally, we loosen another restriction stated by Mill. In particular, he wrote

that the method of difference requires two examples where one example must possess the

characteristic under study (here the characteristic is “anomalous”), while the other must

not. To infer causality, both examples must share all features except one. Meeting this

requirement, especially when working with observational data, can be too difficult. For

example, a research scientist has little control over which patients visit the hospital (except

when that scientist is the admitting physician).

To enable the generation of revisions using the method of difference, we assume that any

subset of features may in itself be considered a single “circumstance” or feature in accord

with Mill. So, suppose that two patients, one anomalous and one nonanomalous resemble

each other with the exception that the anomalous patient has asthma and a cough, while the

nonanomalous patient does not. In this case, we consider “asthma is present and cough is

present” to be a single unshared feature. Even when we can collect the necessary data, the

existence of feature interactions (cancellations, feedback, etc.) renders this assumption both
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reasonable and necessary. For instance, the anomaly may be caused (or explained away) by

the presence of exactly two features.

Similar to questions A1–A4, the following four questions help us concentrate on the

anomalous case when generating our revisions:

D1. How does the anomaly differ from all nonanomalous examples?

D2. How does the anomaly differ from nonanomalous examples with the same observed class?

D3. How does the anomaly differ from nonanomalous examples with the predicted class?

D4. How does the anomaly differ from nonanomalous examples with the predicted class that

were classified by the mispredicting rule?

The first question asks which features of the anomaly separate it from all the nonanomalous

data. To answering this question we could label the single case as anomalous and the

correctly classified data as nonanomalous and then apply a general-to-specific rule learner to

this relabeled data. Question D2 narrows the search to differences within the same observed

class. As an example, suppose that a model incorrectly classified an anomaly as positive

for RS (i.e., the case does not have RS although the model predicts that RS is present).

Kalpana answers Question D2 by comparing the anomaly to the nonanomalous data where

RS is observed to be absent. The idea that the anomaly indicates a previously unknown

expression of the class motivates this question.

The final two questions compare the anomaly to data that the model claims it resembles.

Question D3 uses all the nonanomalous data of the predicted class, with the intuition that

features identified from this subset of data may be strong dividers between the two classes.

Question D4 limits this group of data further, comparing the anomaly to only those cases

that match the overly general classifier. The antecedent of the incorrect classifier used for

grouping this subset of data can be viewed as a traversal down a single branch of a decision

tree. The anomaly represents a case that the tree incorrectly classifies at a leaf node and

spurs growth of that branch. While this approach has been studied in detail (e.g., [48]),

research usually emphasizes how it affects predictive accuracy, whereas our interest lies in

whether the approach leads to acceptable (and more specifically, defensible) hypotheses.

Figure 6 shows the relationships among the defined subsets of data.
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Figure 6: The relationships among subsets of data as defined by Questions D1–D4.

When answering these four questions, we define a difference to be a feature or set of

features of the anomaly not shared by any nonanomalous data in the current subset. For

instance, if the anomaly matches the set of features, “cough is present and dyspnea is present,”

and the nonanomalies do not, then that set of features constitutes a difference. When

identifying differences, Kalpana employs one of two algorithms depending on whether it

is searching for a single feature or a set of features. Figure 7 shows the algorithm for the

former search, and Figure 8 illustrates the latter approach (see Appendix B.4 for pseudocode

describing the nontrivial subprocedures).

The algorithm shown in Figure 7, called the basic method of difference, generates revi-

sions by adding a single feature to the root revision, which is created in the same manner as

in the method of agreement (see p. 32). For the method of difference, Kalpana considers each

anomaly independently, identifying the separators (i.e., single-feature differences) that will be

added to the root revision. Finding separators involves viewing each attribute individually,

identifying the feature that corresponds to the attribute’s observed value within the anomaly.

The program retains only those features that do not match any nonanomalous data. Once
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Method-of-Difference-Basic(anomalies, data):
// begin with an empty set of revisions
revisions = [ ]
// remove the anomalies from the rest of the data
nonanomalies = data - anomalies
// individually consider each anomaly
for all a in anomalies
// consider each feature expressed in the anomaly that is
// not expressed in any of the nonanomalous data
for all s in separators(feature-set(a), nonanomalies)
// consider each rule that incorrectly classifies the
// anomaly
for all i in incorrect-classifiers(a)
// create the root revision from the antecedent of the
// incorrect classifier and the correct classification of
// the anomaly
r = create-root(antecedent(i), class(a))
// add the separating feature to the antecedent of the
// root revision
push(s, antecedent(r))
// when the root revision meets the monotonicity
// criterion, add it to the collection of revisions
unless(overly-general(r, nonanomalies))
push(r, revisions)

return revisions

Figure 7: The algorithm for Kalpana’s basic method of difference generator.
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identified, Kalpana appends each feature to the antecedent of each root revision, creating

one complete revision for each separating-feature–incorrect-classifier pair. If a resulting revi-

sion creates new anomalies when applied to the entire collection of nonanomalous data (by

a rule-matching procedure), then it is discarded according to the monotonicity criterion.

Figure 8 displays the algorithm used by Kalpana to identify a set of features constituting

a difference. This procedure executes only when the basic method of difference generator

from Figure 7 fails to produce any revisions. While revisions produced by the basic method

extend a decision branch one step in several directions, this generator lengthens the branch

in a single direction using the anomaly as its guide. To do this, the program examines each

anomaly independently in the context of one of its incorrect classifiers. Kalpana creates a

root revision from the antecedent of the classifier and the observed class of the anomaly,

and follows this with a search for the feature that best separates the anomaly from the

current subset of nonanomalous data. For example, if the addition of “cough is absent” to the

revision’s antecedent places the anomaly in a group with three members of the nonanomalous

subset and the addition of “wheezing is absent”places the anomaly in a group with five, then

the program will select the first feature. If multiple features separate equally well, then

Kalpana makes an arbitrary choice among them. This procedure continues until either the

anomaly is completely segregated or all possible features have been added to the revision.

In the latter case, the antecedent of the revision contains all the features of the anomaly. As

with the other generators, if the resulting revision fails to meet the monotonicity criterion,

Kalpana discards it.

3.1.4 Time Complexity of the Revision Generators

The runtime of Kalpana varies depending on which generators a particular problem requires,

but we can analyze the running times of the individual generators with respect to their

worst-case performance. Even with gross estimates, each of the three algorithms employed

has polynomial time complexity in terms of the input. To establish the runtime bounds we

begin with two assumptions. In particular, we consider the act of matching a feature to a

datum to take constant time, and we assert that rules may contain at most one value per
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Method-of-Difference-Decision-Branch(anomalies, data):
// begin with an empty set of revisions
revisions = [ ]
// remove the anomalies from the rest of the data
nonanomalies = data - anomalies
// individually consider each anomaly
for all a in anomalies
// consider each rule that incorrectly classifies the anomaly
for all i in incorrect-classifiers(a)
// create the root revision from the antecedent of the
// incorrect classifier and the correct classification of
// the anomaly
r = create-root(antecedent(i), class(a))
// while the revision fails to meet the monotonicity
// criterion and while the features matching the observed
// values in the anomaly have not all been used in the
// antecedent of the revision
while(overly-general(r, nonanomalies) and

(feature-set(a) - features(antecedent(r)) > 0)
// find the one feature that separates the anomaly from the
// greatest number of nonanomalous data in the current
// subset
// add that feature to the antecedent of the revision
push(best-separator(r, feature-set(a) - antecedent(r),

nonanomalies),
antecedent(r))

// if the revision meets the monotonicity criterion, keep it
unless(overly-general(r, nonanomalies))
push(r, revisions)

return revisions

Figure 8: The algorithm for Kalpana’s decision-branch method of difference generator.
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attribute (i.e., attribute values are mutually exclusive). In addition to these assumptions,

we introduce following notation for the input so that we can effectively discuss complexity:

α represents the number of anomalies, γ the number of nonanomalies, τ the number of

attributes, φ the number of features (attribute-value pair), and ρ the number of rules.

We begin by analyzing the worst-case complexity of the helper functions, which may be

found as pseudocode in Appendix B.4 when their implementations are nontrivial. Determin-

ing which features occur in all the anomalies requires time O(φα). Identifying the necessary

features within the set of shared features requires O(γφτρ) time in the worst case. That

is, given a set of rules and features, we build all possible one-feature extensions of all the

rules and match each rule to all the nonanomalous data. Finding the best separator within

a pool of features takes time O(γφτ) because each rule gets extended by each feature in

the pool and is then matched to the data. Finally, we require O(γτ) time to test a rule for

over-generality, which entails matching the features within that rule to all the given data.

Having analyzed the helper functions within our algorithm that do not operate in constant

time, we can proceed with the analysis of the main methods. The majority of the time spent

within the method of agreement occurs within a nested loop involving the anomalies and the

incorrect classifiers of each anomaly. Within this loop, we identify the necessary features for

the explanation of the anomaly, and if required, we search for high quality separators until

the revision completely separates the anomalies from the nonanomalies. Of these operations,

the former takes the most time. Thus the method of agreement algorithm runs in time

O(αγτφρ2).4 That is, it is polynomial in the size of the data set, the number of features,

and the size of the model. We note that Kalpana applies this algorithm to each defined

group of anomalies.

The method of difference algorithms differ significantly in their complexity due to the

relatively simple search performed by the basic approach. The basic method of difference

spends most of its time determining the generality of a specific revision. To clarify, after

identifying all separators for each anomaly the algorithm appends those separators to each

relevant rule, and then matches that rule to the nonanomalous data. So, the total runtime

4We have ignored the action of separating those features used within the revision from the features left
within the pool of shared features. While this takes longer than constant time, O(τ) actually, its effect is
additive and can be overestimated using the given runtime polynomial.
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is O(αγρτ 2) because the number of attributes limits the number of separators as well as

the number of features that can exist within a single rule. The decision-branch method of

difference takes slightly longer time in the worst case since it can attempt to improve a rule

beyond adding a single feature. In fact, the runtime for this method is O(αγρφτ 2), where the

addition of φ indicates that the method may examine all features when building the revision.

We emphasize that the complexity provided for the hypothesis generation algorithms

likely overestimates the actual worst-case bound. However, we wished to show that even

in the extreme case, which may in fact be impossible, the algorithms still operate within

polynomial bounds with respect to their input. Although we assumed that matching occurs in

constant time, we note that the time required may be significant, thereby adversely affecting

the observed runtime of Kalpana because of the sheer number of matches required. We have

not attempted to optimize the algorithms in terms of matching the features to the data,

but we suspect that a few minor changes would reduce redundancy and lower the provided

bounds (e.g., see [4]).

3.2 EVALUATION OF KALPANA’S REVISION GENERATORS

3.2.1 Method

We evaluated Kalpana’s revision generators using the acceptability of their proposed revisions

in the domain of bioterrorism surveillance. We expected that the anomaly-driven approach of

these generators would lead to a greater number of acceptable revisions than an approach not

driven by anomalies. That is, the latter approach would miss acceptable revisions found by

the former, indicating that context of the anomaly contains information useful when revising

models. To test this hypothesis, we compared the numbers of total and acceptable revisions

produced by all of Kalpana’s generators on all subsets to the output from two subsets in

particular. To clarify, suppose that we treat the problem as one of classification with the

target concept being “anomaly.” This situation resembles Kalpana’s approach to answering

Question D1. If, on the other hand, we retained the original target class, a decision-tree
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• If cough is present, then RS is present.

• If wheezing is present, then RS is present.

• If sputum is present, then RS is present.

• If a pneumonia x-ray is positive, then RS is present.

• If dyspnea is present, then RS is present.

Figure 9: M1: Overly general model of respiratory syndrome (RS). (Same as Figure 2.)

generator would view the subset related to Question D4 when faced with the anomaly.

Thus, Kalpana’s results from these subsets approximates the behavior of a well-studied class

of symbolic learners, and we use this behavior later (Chapter 5) as a baseline to measure

performance. Additionally, this experiment allows us to explore the sort of revisions that

Kalpana produces and to see whether acceptable revisions are relatively easy or difficult to

find.

For our evaluation, we chose the task of identifying patients with respiratory syndrome

(RS) using the data described in Section 2.2.1. Kalpana applied each of the three models

shown in Figures 9, 10, and 11 to the 190 training data. Anomalies resulted in all applications,

and Kalpana’s revision generators were invoked to resolve them. The resulting revisions were

paired with their respective overly general rules and shown to our domain expert. Using the

instructions shown in Section 2.2.1, the expert judged whether each revision was acceptable.
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• If chest tenderness is present, then RS is absent.

• If a positive pulmonary edema x-ray is present, then RS is present.

• If a positive pneumonia x-ray is present, then RS is present.

• If a pneumonia diagnosis is present, then RS is present.

• If rhonchi are present, then RS is present.

• If a positive pleural effusion x-ray is present, then RS is present.

• If sputum is absent and headache is present, then RS is absent.

• If cough is absent and chest pain is present, then RS is absent.

• If dyspnea is present and chest pain is absent, then RS is present.

• If dyspnea is absent, a positive pneumonia x-ray is absent, and tachycardia is present,

then RS is absent.

• If dyspnea is absent, a positive pneumonia x-ray is absent, and oxygen desaturation is

absent, then RS is absent.

• If cough is absent, oxygen desaturation is absent, and rales/crackling is absent, then RS

is absent.

• If a positive pneumonia x-ray is absent, and oxygen desaturation is absent, and a positive

pulmonary edema x-ray is absent, then RS is absent.

• If wheezing is absent, a positive pneumonia x-ray is absent, a positive pulmonary edema

x-ray is absent, and a positive pleural effusion x-ray is absent, then RS is absent.

Figure 10: M2: A plausible model of respiratory syndrome (RS) extracted from the training

data described in Section 2.2.1.

42



• If chest tenderness is present, then RS is absent.

• If headache is present, then RS is absent.

• If a pulmonary edema-congestive heart failure diagnosis is present, then RS is present.

• If a positive pulmonary edema x-ray is present, then RS is present.

• If a positive pneumonia x-ray is present, then RS is present.

• If a positive pleural effusion x-ray is present, then RS is present.

• If wheezing is present, then RS is present.

• If dyspnea is absent and a positive pneumonia x-ray is absent, then RS is absent.

• If a positive pneumonia x-ray is absent, oxygen desaturation is absent, and chest pain is

present, then RS is absent.

• If sputum is absent, a positive pneumonia x-ray is absent, and oxygen desaturation is

absent, then RS is absent.

• If dyspnea is present, bronchitis is absent, and chest pain is absent, then RS is present.

• If sputum is present, a positive pneumonia x-ray is absent, a positive pleural effusion

x-ray is absent, and asthma is absent, then RS is absent.

Figure 11: M3: A second plausible model of respiratory syndrome (RS) extracted from the

training data described in Section 2.2.1.
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Table 3: The number of unique revisions generated by Kalpana for models M1, M2, and M3

along with the number of those revisions that were acceptable.

Model Unique Acceptable
Revisions Revisions

M1 26 15
M2 89 22
M3 67 12

Total 182 49

Table 4: The number of revisions generated by Kalpana using Model M1.

Revisions Method of Agreement Method of Difference
Subsets Subsets

A1 A2 A3 A4 All D1 D2 D3 D4 All
All 0 0 3 3 6 14 2 15 12 43

Acceptable 0 0 3 3 6 8 1 10 10 29

3.2.2 Results

Our primary goal during evaluation was to determine the effectiveness of examining specific

subsets of data when generating revisions. Tables 4, 5, and 6 show the results of Kalpana’s

runs on each of the three models respectively. These tables give the number of total revisions

along with the number of acceptable revisions generated in response to Questions A1–A4

and D1–D4. Note that revisions could be duplicated within the same model and between

models (though the latter never occurred in these experiments), so Table 3 lists the number

of unique revisions and the number of those that were acceptable

Table 4 lists the results of applying the model in Figure 9 to the 190 data. In this table,

the columns indicate which questions the subset of nonanomalous data relates to. The first

row gives the total number of revisions generated by Kalpana from each subset, and the

second row tallies the acceptable revisions. As shown in Table 3, the program generated 26

unique revisions, 15 of which were acceptable. The repeated revisions stemmed primarily

from the generation of the same exception rule for the same anomaly when viewing separate
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Table 5: The number of revisions generated by Kalpana using Model M2.

Revisions Method of Agreement Method of Difference
Subsets Subsets

A1 A2 A3 A4 All D1 D2 D3 D4 All
All 0 3 1 1 5 30 11 53 63 157

Acceptable 0 1 1 1 3 1 0 18 19 38

Table 6: The number of revisions generated by Kalpana using Model M3.

Revisions Method of Agreement Method of Difference
Subsets Subsets

A1 A2 A3 A4 All D1 D2 D3 D4 All
All 0 0 2 2 4 12 4 40 51 107

Acceptable 0 0 2 2 4 2 0 6 8 16

subsets of data. However, in some cases, different anomalies would lead to the same revision.

Although most of the overlapping rules came from the method of difference generator, all

three of the rules produced by the method of agreement were duplicated when Kalpana

answered Questions A3 and A4. Of the total set of revisions, the domain expert judged all

three unique exception rules produced by the method of agreement and many of the revisions

produced from the method of difference to be acceptable.

Table 5 results from applying the model in Figure 10 to the 190 data. Here 22 of the 89

unique revisions were acceptable. The most fruitful subsets in terms of acceptable anomaly

resolutions came from Questions D3 and D4. In this case, it appears that only one of the

subsets defined by Questions D3 and D4 need be examined by the program since all 18 of the

acceptable exception rules extracted from D3 were repeated using D4. The single acceptable

revision produced via Question D1 was unique to that subset (i.e., no other subsets generated

from the various anomalies led to the production of that revision), but the subset’s signal

to noise ratio appears to be low. As in the first set of results, the method of agreement

produces a limited number of revisions that are almost always acceptable—and always so

when we constrain Kalpana to viewing subsets from Questions A3 and A4.
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Table 7: A summary of all the revisions generated by Kalpana from Models M1, M2, and

M3.

Revisions Method of Agreement Method of Difference
Subsets Subsets

A1 A2 A3 A4 All D1 D2 D3 D4 All
All 0 3 6 6 15 56 17 108 126 307

Acceptable 0 1 6 6 13 11 1 34 37 83

Table 8: The number of unique revisions attributable to Question D4 along with the number

of revisions that occur uniquely when addressing the other seven questions. The number of

acceptable revisions appears in parentheses.

Model Revisions from Revisions from
Question D4 Other Subsets

M1 12 (10) 14 (5)
M2 63 (19) 26 (3)
M3 51 (8) 16 (4)

Table 6 shows how the various subsets contributed to the development of acceptable

exception rules for the model in Figure 11. As with the former two experiments Questions

A3 and A4, while producing a limited number of revisions, tended to result in acceptable

rules. In contrast to the previous results, the method of difference yielded much fewer

acceptable revisions in relation to the total number produced. Out of the 67 unique anomaly

resolutions, only 12 were deemed acceptable.

Finally, Table 7 summarizes the number of revisions generated by Kalpana for all three

models. The trends shown in this table mirror the other results. In particular, the subsets

addressing Questions A3 and A4 produce the highest fraction of acceptable revisions, while

D4 leads to the greatest number. Interestingly, A3 and A4 led to the generation of identical

anomaly resolutions such that for our experiment, using both subsets was redundant. How-

ever, this need not always be the case. Table 8 illustrates the fruitfulness of D4 by showing

how many revisions, total and unique, that Kalpana found looking just at the D4 subset ver-
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sus all the other subsets. To generate this table, we looked at all the revisions, picking out

those that stemmed from D4 and removing redundancies produced from other the subsets.

All revisions not attributable to D4 were then grouped together to form the numbers in the

second column, revealing that D4 was over twice as fruitful in terms of acceptable anomaly

resolutions as the remaining seven subsets combined.

3.2.3 Discussion

At a glance, our results weakly support our claim that anomaly-driven theory revision leads

to a greater number of acceptable revisions. Although Kalpana generated more revisions

overall using our sets of questions as a guide, most of these came from Question D4, which

served as a baseline. However, the results reveal three interesting findings. First, the method

of agreement produced a surprisingly high proportion of acceptable revisions. Second, the

excessively general theory (M1 in Figure 9) led to fruitfulness in several of the subsets. And,

third, the most productive subsets of data, in terms of the number of acceptable anomaly

resolutions produced, contained the fewest members.

Even though 307 of the 322 total revisions came from applying the method of differ-

ence, those 15 produced by the method of agreement were more likely to be acceptable. In

fact, the anomaly resolutions generated using Questions A3 and A4 were always acceptable.

We suspect that viewing groups of anomalies contributes to this effect. In particular, by

comparing multiple anomalies (in these experiments from 2 to 23 cases), Kalpana reduces

the likelihood of emphasizing coincidental differences between any single anomaly and the

nonanomalous data. By avoiding some coincidental differences, Kalpana produces revisions

that relate better to an expert’s knowledge of the domain.

The next finding indicates that anomaly-centered subsets of data may be more useful

when working with a very general initial model. The first model, M1, shown in Figure 9

contained only five rules and was obviously too general to accurately characterize RS. In this

case, all but one of the subsets produced an acceptable revision. In contrast, the more specific

models benefited most from more restricted subsets of data. That is, the characteristic of

being an anomaly was less important than other factors, such as the rule that the anomaly
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violated. This finding implies that the most fruitful subset of data for specific models comes

from Question D4, which roughly corresponds to the data used by a decision-tree generator.

Our approach differs slightly in that it separately considers each anomaly, whereas a decision-

tree generator would consider multiple anomalies at one as long as they cluster at the same

leaf. Thus we suspect that as a decision tree becomes more specific, its learning algorithm

becomes more focused with respect to anomalies, leading to meaningful revisions.

Finally, we notice that Kalpana generates acceptable revisions from relatively few non-

anomalous data. The subset defined by Question A4 was not only the best subset for the

method of agreement but also the most restrictive of the group. The same can be said of

Question D4’s subset with respect to the method of difference. This preliminary finding im-

plies that model revision depends primarily on the relationships among the data as opposed

to the amount of data available. That is, blindly gathering more data to improve a model

will not prove as helpful as collecting very specific data centered on an anomaly. So, when

data production can be controlled, the best strategy involves sampling the data space around

an anomalous result (in terms of a similarity measure). Thus, the task of theory revision

should be anomaly-driven not only when we find weaknesses in the model, but also when we

analyze data to correct that model.

3.3 CONCLUSION

In this chapter, we examined the hypothesis that anomaly-driven theory revision would pro-

duce a larger number of acceptable exception rules than traditional methods. After introduc-

ing the idea of anomaly-focused subsets of data and describing some induction procedures,

we explored this hypothesis using data from the medical domain. Although the results only

weakly supported the hypothesis, we identified a few interesting findings. In particular, our

results supported the approach of current symbolic learning systems. That is, the most fruit-

ful subsets when using the method of difference correspond to the actual subset examined by

rule and decision-tree learners. Additionally, we found that relatively few data are necessary

for anomaly revision.
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Regardless of which methods or subsets generate the revisions, we still wish to determine

their acceptability. Since most of the generated revisions were unacceptable, we made little

progress toward the identification of those that are acceptable and, in particular, defensi-

ble. Before determining the characteristics of defensible revisions, we explore whether the

application of such revisions lead to more accurate models.
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4.0 APPLYING ACCEPTABLE REVISIONS

As we saw in Chapter 3, anomaly-driven revision generators do not guarantee the acceptabil-

ity of the revisions. Even though Kalpana ensures that its revisions are both rehabilitative

and monotonic, several anomaly resolutions failed to be defensible. Regardless, we could ap-

ply the revisions indiscriminately, making an arbitrary selection if multiple exception rules

repair the same anomaly. However, work by Pazzani and colleagues [44] indicates that do-

main experts are less likely to accept such models. Therefore we should consider applying

only the acceptable revisions.

Suppose that we limit ourselves to acceptable revisions, how will such a limitation affect

predictive accuracy? Intuitively, we expect the accuracy of the resulting models to be just as

high or higher than comparable models that contain unacceptable revisions. Two assump-

tions support this intuition. First we assume that our domain knowledge better approximates

the true state of the world than a random collection of generalizations. Second we assume

that generalizations sharing terms and relationships with our background knowledge better

represent truth than arbitrary relationships1. These are strong assumptions, so to confirm

our intuition we answer the question empirically.

To determine the correctness of our intuition, we performed three experiments of increas-

ing complexity. The first two experiments used synthetic data whereas the final experiment

used data from the respiratory syndrome (RS) domain. The first experiment links defensi-

bility to probability, suggesting that when one knows only the statistical characteristics of

1Here we invoke J.G. Frazer’s first principle of magic: like produces like, or the Law of Similarity [19].
That is, if our revision looks like our domain knowledge, and our domain knowledge provides predictive
accuracy, then our revision does as well. Of course scientists are not shamans, so we alter the fallacious
claim that the revision does provide predictive accuracy to the less controversial claim that such a revision
is more likely to provide accuracy.
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a domain, defensibility and probability equate. The second experiment extends the first by

adding an irrelevant attribute to the data, thereby slightly complicating the domain. The

third experiment tests the experimental question on a real-world domain. For this, we use

an expert’s assessment of defensibility to determine how this property affects accuracy in the

absence of complete domain knowledge.

4.1 EXPERIMENTS IN SYNTHETIC DOMAINS

4.1.1 The Average of Two Attributes

The first test uses synthetic data generated from a domain theory that is difficult to represent

with propositional Horn clauses. The data consist of two attributes with integer values

ranging between 1 and 100. We assigned a final class of low, mid, or high depending on the

average of these two attributes. As shown in Figure 12, an average of less than or equal to 30

results in a classification of low, an average greater than 70 is considered high, and we labeled

the rest of the values mid. For testing purposes, we created 30 data sets each containing 100

feature vectors, randomly selecting the values for the data from a uniform distribution and

assigning the class using the described theory.

We created four models for the purposes of this experiment. The first model, shown

on the bottom in Figure 12, serves as the flawed base upon which the other models are

built, using only the first of the two attributes to classify the data. The symbolic values of

the attribute employ the intervals defined for classification. The remaining models include

revisions from Figure 13.2 The highly defensible rules appear in the second, third, and

fourth models, with the third model incorporating the moderately defensible revisions, and

the fourth model including the four least defensible rules.

For this straightforward domain, where full knowledge is available, we judged defensibility

based on the probability that a hypothesis would be true. Therefore, we know that the

2When adding revisions to the models in both of our synthetic domains, we ignore the monotonicity
constraint. That is, we assume that all data that we have seen before support all of the revisions that we
introduce.
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True domain model

• If (a1 + a2)/2 ≤ 30 THEN the class is low.

• If 30 < (a1 + a2)/2 ≤ 70 THEN the class is mid.

• If 70 < (a1 + a2)/2 ≤ 100 THEN the class is high.

B: Base model

• IF a1 is low, THEN the class is low.

• IF a1 is mid, THEN the class is mid.

• IF a1 is high, THEN the class is high.

Figure 12: Actual and approximate domain models for the two-attribute, synthetic data set.

combination of a low value with a high value results in a classification of mid. That is,

since the values are integers, the average of the lowest possible low value and the lowest

possible high is 36. Checking that the highest values for both ranges also average to a mid

result indicates the correctness of the two rules capitalizing on this knowledge. Therefore,

we consider these rules to be highly defensible. This same information allows us to ignore

rules where both attributes have low values but the consequent yields a high classification.

Such occurrences have probabilities of zero and are therefore not defensible. Due to the

impossibility of such cases, they can be safely ignored as they would not be induced from

any noise-free data.

The other eight rules in Figure 13 require extra knowledge about the sampling process

to assess their defensibilities. Since we generated the data uniformly at random, we know

that a single attribute with the value mid increases the likelihood that the actual class will

be mid. As an example, if the attributes have values of mid and high, the average can range

between 51 and 85. Sampling the integer values uniformly at random means that 3/7 of the

time we expect that the average will fall within the high range and 4/7 of the time we expect

it to fall within the mid range. Therefore, the rule “IF a1 is mid and a2 is high, THEN the

class is mid” is more defensible than when the same antecedent predicts a class of high.
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HD: Revisions with High Defensibility

• IF a1 is low and a2 is high, THEN the class is mid.

• IF a1 is high and a2 is low, THEN the class is mid.

MR: Revisions with Moderate Defensibility

• IF a1 is low and a2 is mid, THEN the class is mid.

• IF a1 is mid and a2 is low, THEN the class is mid.

• IF a1 is mid and a2 is high, THEN the class is mid.

• IF a1 is high and a2 is mid, THEN the class is mid.

LR: Revisions with Low Defensibility

• IF a1 is low and a2 is mid, THEN the class is low.

• IF a1 is mid and a2 is low, THEN the class is low.

• IF a1 is mid and a2 is high, THEN the class is high.

• IF a1 is high and a2 is mid, THEN the class is high.

Figure 13: Revisions for the base model (Figure 12). Note that only two of the MR rules are

necessary because the second rule in the base model gives the same classification as those

that assign a class of mid when the first attribute is mid.
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Table 9: The average number of anomalies resulting from each model.

Model Mean Number of Anomalies (out of 100) Standard Deviation

(99% Confidence Interval)

Ba 42.33 (40.31, 44.36) 4.03

BHDb 23.73 (21.48, 25.98) 4.47

BHD-MRc 17.13 (15.28, 18.98) 3.67

BHD-LRd 30.93 (27.87, 34.00) 6.10

a Base model.
b Base model with highly defensible revisions (HD).
c BHD with the moderately defensible revisions (HD + MR).
d BHD with the barely defensible revisions, but not the moderately defensible ones (HD + LR).

We applied our four models to the 30 data sets, determining predictive accuracy by

dividing the number of nonanomalous data by the total size of the data set. Since each data

set contains 100 elements, we instead report the number of anomalies, which indicates the

error rate for each model when the data are sampled uniformly at random. To assess the

performance of the models, we first calculated the mean number of anomalies produced by

each model. We also calculated the difference in model performance, testing the significance

using paired t-tests.

Before discussing the results, we qualify our findings by indicating the simplicity of the

experiment. That is, when we assume that defensibility results from some understanding

of the relative probabilities of events, then these findings lose some force. No one would

argue that incorporating rules tied directly to more probable events would decrease our

model’s performance. However, this experiment was not designed to confirm a theoretically

evident result, but to cast defensibility as an estimate of probability and thus make it easy

to assess. Additionally this experiment elucidates the degree of improvement that can result

from emphasizing defensible revisions.

Table 9 gives the average number of anomalies created by each model when applied to the

data, the 99% confidence interval around that mean, and the standard deviation. Keeping
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Table 10: The expected value of the difference in the number of anomalies between each pair

of models (column − row) with 99% confidence intervals.a

Models B BHD BHD-MR BHD-LR

B – -18.60 -25.20 -11.40

(-20.24, -16.96) (-27.81, -22.59) (-15.03, -7.77)

BHD – – -6.60 7.20

(-9.38,-3.82) (4.35, 10.05)

BHD-MR – – – 13.80

(9.59, 18.01)

a All differences are significant with p < 0.001.

in mind that fewer anomalies indicates better performance, these results show that the base

model (B) produces 42.33 anomalies on average (i.e., 42.33% of our data are anomalous).

Adding the two highly defensible rules to the base model (BHD) reduced the number of

anomalies by roughly 44% to 23.73. When we add the moderately defensible revisions to

the improved model (BHD-MR), the number of anomalies decreases to 40% of the baseline.

And, as expected, the addition of the barely defensible rules to BHD (BHD-LR) hurts the

performance of BHD, reducing its improvement over B to 27%. In fact, most of this model’s

improvement over the baseline is attributable to the highly defensible rules.

Table 10 shows the expected value of the difference in the number of anomalies generated,

which indicates how the addition of various revisions alters the model’s performance, along

with the endpoints of a 99% confidence interval around the value. These results indicate

that BHD-LR should produce more anomalies than all but the base model. Comparing

BHD-LR to BHD indicates the number of anomalies attributable to the barely defensible

rules. Rounding up, we expect between 5 and 11 anomalies to result from choosing a revision

that is not defensible. This increase almost mirrors the decrease in anomalies seen when we

choose the moderately defensible rules. There are no surprises here, and again, we note that
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• IF a1 is low, THEN the class is low.

• IF a1 is mid, THEN the class is mid.

• IF a1 is high, THEN the class is high.

• IF a1 is low and a3 is high, THEN the class is mid.

• IF a1 is high and a3 is low, THEN the class is mid.

• IF a1 is low and a3 is mid, THEN the class is mid.

• IF a1 is mid and a3 is low, THEN the class is mid.

• IF a1 is mid and a3 is high, THEN the class is mid.

• IF a1 is high and a3 is mid, THEN the class is mid.

Figure 14: BHD3-LR: The base model with additional rules that rely erroneously upon the

third, irrelevant attribute for classification.

this initial experiment primarily serves to tie defensibility to probability and to give us a

context in which we can understand the remaining experiments.

4.1.2 The Introduction of an Irrelevant Attribute

The next experiment continues our examination of the link between probability and defensi-

bility. For this experiment we expanded the data to contain three attributes. We assign the

class by averaging the values of the first two attributes as with the prior experiment, which

means that the third attribute is irrelevant. We generated values for the three attributes in

30 sets of 100 data each by selecting integer values uniformly at random between 1 and 100.

As with the prior experiment, we used the model in Figure 12 to create the final classification.

This test employs four models, two of which come from the prior experiment. Model B

(see Figure 12) again serves as the first model, and BHD-MR, which contains the moderately

and highly defensible revisions from Figure 13, serves as the second. We retain BHD-MR

for this experiment due to its performance during the earlier experiment, and since we used

identical sampling and classification procedures for the new data, we expect BHD-MR to
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perform identically well in this case. Figure 14 shows the third model (BHD3-LR), which

resembles the second except that it uses the first and third attributes for classification. As

a result, and since we know the true classifier, this model is the least defensible. However,

BHD3-LR represents the model produced when we mistakenly apply incorrect revisions. To

construct the final model (B-ALL), we take the union of the second and third models, which

could occur if a system applied all possible revisions indiscriminately.

Since we have full knowledge of the domain for this experiment, defensibility once again

comes from the probability that a revision will give a correct classification. We selected the

defensible anomaly resolutions in BHD-MR because they improved the performance of the

base model by the greatest amount in the prior experiment. In contrast, the revisions in

BHD3-LR are obviously not defensible since they appeal to the information in an irrelevant

attribute. However, if this attribute actually contributed to the class assignment in place of

the second one, then these would be the most defensible revisions (i.e., for the same reason

that the revisions in BHD-MR actually are the most defensible). So, supposing that the

class was assigned as in the first experiment, but the attribute that was paired with the first

was unknown, then the revisions added to both BHD-MR and BHD3-LR would be equally

defensible. In addition, the revisions in BHD3-LR referring to the third attribute would be

the most defensible ones within the selected expression of the domain.

After applying our models to the data sets, we once again used the reduction in the

number of anomalies to judge performance. Table 11 gives the mean number of anomalies

resulting from each model with a 99% confidence interval, as well as the standard deviation.

As in the prior experiment, BHD-MR again reduces the number of anomalies by just under

60%. In comparison BHD3-LR yields an 18% improvement over B, and B-ALL reduces the

number of anomalies that the base model produces by 33%.

We should note that the models cannot produce any internal conflicts. The unacceptable

revisions, being more specific than all the rules in B, take precedence. Additionally, all the

revisions predict the same outcome—mid. Therefore each newly introduced anomaly in B-

ALL was a case where the revisions employing the irrelevant attribute predicted mid and

the observed class was either low or high. So, although the revisions added to BHD3-LR
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Table 11: The average number of anomalies resulting from each model.

Model Mean Number of Anomalies (out of 100) Standard Deviation

(99% Confidence Interval)

Ba 42.80 (40.27, 45.33) 5.03

BHP-MRb 17.17 (14.82, 19.51) 4.65

BHP3-LRc 34.90 (32.20, 37.60) 5.36

B-ALLd 28.73 (26.47, 30.99) 4.49

a Base model.
b Base model with the highly and moderately defensible revisions.
c Base model with the with revisions referring to the irrelevant attribute.
d Base model with revisions from BHP-MR and BHP3-LR.

resolved some anomalies produced by B, they also created new anomalies in the test sets.

These new anomalies explain why B-ALL performs worse than BHD-MR.

Table 12 shows the expected value of the difference in the number of anomalies generated

as well as the associated 99% confidence interval. As with the prior experiment, these results

indicate how the addition of various revisions alters the model’s performance. Here, BHD3-

LR, though improved over the base model, produces the most anomalies when compared to

both BHD-MR and BHD-ALL. In particular, we expect BHD-MR to produce 17.73% fewer

anomalies on average than BHD3-LR, whereas BHD-ALL should produce 6.17% fewer.

That BHD3-LR should produce fewer anomalies (-7.9%) than B is an oddity. The reason

for such an improvement is twofold. First, the majority of the data has the class mid due

to uniform sampling of the attributes. Second, although we based the rules in BHD3-LR on

an irrelevant attribute, they do make the prediction of mid more likely than when applying

B. Thus we see that due to the effects of sampling bias we may select errant revisions. If

we accept a revision that improves performance without regard for its defensibility, we could

easily create a model similar to B-ALL or even BHD3-MR by overfitting the data. In such

a case, we would carry forward rules unrelated to the true domain theory and could even

overlook those rules closest to the truth.
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Table 12: The expected value of the difference in the number of anomalies between each pair

of models (column − row) with 99% confidence intervals.a

Models B BHD-MR BHD3-LR B-ALL

B – -25.63 -7.90 -14.07

(-28.44, -22.83) (-11.14, -4.65) (-17.21, -10.9)

BHD-MR – – 17.73 11.57

(15.04, 20.42) (9.85, 13.28)

BHD3-LR – – – -6.17

(-8.16, -4.18)

a All differences are significant with p < 0.001.

Following the form of the earlier experiment on plausibility, we have used a simple domain

theory to identify some of the perils of ignoring defensibility during model revision. Primarily,

we found that sampling bias can lead to the acceptance of incorrect, but well-performing,

revisions. We are unsurprised with this result, but take it as a firm indicator that predictive

accuracy should not be the sole measure used when evaluating a revision. Specifically, we

can rely on wise judgments of defensibility to reduce the effects of both sample bias and,

although we have not dealt with it, data noise.

4.2 AN EXPERIMENT IN A REAL-WORLD DOMAIN

To determine how well our results with synthetic data map to real, complex domains in

which defensibility means more than “more probable,” we explored the use of acceptability

within the field of biomedical informatics. More specifically, we worked to identify a model

of the RS domain introduced in Section 2.2. While the small sample sizes limit our ability

to make effective claims of statistical significance, they can give an indication of what we

might expect in future work.
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To classify the data, we developed two models generated using the rule-learning program

RL [46]. We separated the 190 training data described in Section 2.2.1 into training and

test sets so that during each learning trial RL extracted rules from 80% of the data, using

the other 20% to determine the effectiveness of the learned model. We created seven models

with this method, giving each model a different inductive bias and a different data partition.

We then presented the resulting rule sets to our domain expert, Dr. John Dowling, who

judged the two presented in Figures 15 and 16 to be the most plausible.

We used the models selected by the domain expert to test our assumption that the

application of defensible revisions improves predictive accuracy in contrast to the application

of indefensible ones. In fact, we altered our conjecture slightly from the prior two experiments

in that we required the revisions that we applied for this experiment to match all three

acceptability criteria.3 To create the revisions, Kalpana first classified the 190 training data

using one of the models, passing any resulting anomalies to the revision generators described

in Chapter 3. These generators created at least one revision for each incorrect classifier of

each anomaly. Thus, if Kalpana classified the anomalous case as RS-present, but the case

matched the first two rules in Figure 16, then the generators produced at least two revisions.

We presented the resulting revisions, as shown in Figure 17, to Dr. Dowling for analysis

along with the instructions given in Appendix C.

Therefore each revision was determined to be either defensible or not based on the opinion

of an expert in infectious diseases4. The information about the difficulty of classification

was collected to distinguish between easily classified revisions and those that are borderline,

possibly requiring further assumptions on the part of the expert. In some cases, Dr. Dowling

volunteered his own rationale for the ratings. For example, he labeled the second revision in

Figure 17 plausible, and mentioned that it was a difficult case to decide. As an explanation

of the difficulty, he wrote, “[I] must assume that the source of bleeding [hemoptysis, which

specifically refers to bleeding from the respiratory tract] is not visible on x-ray.” Thus he

3With the experiments on synthetic data, all but two of the revisions would lead to new anomalies, so we
relaxed the monotonicity constraint.

4The instructions given to Dr. Dowling refer to the plausibility of rules as opposed to their defensibility.
Due to the generality of the term “plausibility,” we later chose to refine our terminology within this thesis to
reflect the specificity of the concept we are attempting to understand.
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• IF chest tenderness is present, THEN RS is absent.

• IF a positive pulmonary edema x-ray is present, THEN RS is present.

• IF a positive pneumonia x-ray is present, THEN RS is present.

• IF a pneumonia diagnosis is present, THEN RS is present.

• IF rhonchi are present, THEN RS is present.

• IF a positive pleural effusion x-ray is present, THEN RS is present.

• IF sputum is absent and headache is present, THEN RS is absent.

• IF cough is absent and chest pain is present, THEN RS is absent.

• IF dyspnea is present and chest pain is absent, THEN RS is present.

• IF dyspnea is absent, a positive pneumonia x-ray is absent, and tachycardia is present,

THEN RS is absent.

• IF dyspnea is absent, a positive pneumonia x-ray is absent, and oxygen desaturation is

absent, THEN RS is absent.

• IF cough is absent, oxygen desaturation is absent, and rales/crackling is absent, THEN

RS is absent.

• IF a positive pneumonia x-ray is absent, and oxygen desaturation is absent, and a positive

pulmonary edema x-ray is absent, THEN RS is absent.

• IF wheezing is absent, a positive pneumonia x-ray is absent, a positive pulmonary edema

x-ray is absent, and a positive pleural effusion x-ray is absent, THEN RS is absent.

Figure 15: M4: A plausible model of respiratory syndrome (RS) extracted from training

data.
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• IF chest tenderness is present, THEN RS is absent.

• IF headache is present, THEN RS is absent.

• IF a pulmonary edema-congestive heart failure diagnosis is present, THEN RS is present.

• IF a positive pulmonary edema x-ray is present, THEN RS is present.

• IF a positive pneumonia x-ray is present, THEN RS is present.

• IF a positive pleural effusion x-ray is present, THEN RS is present.

• IF wheezing is present, THEN RS is present.

• IF dyspnea is absent and a positive pneumonia x-ray is absent, THEN RS is absent.

• IF a positive pneumonia x-ray is absent, oxygen desaturation is absent, and chest pain is

present, THEN RS is absent.

• IF sputum is absent, a positive pneumonia x-ray is absent, and oxygen desaturation is

absent, THEN RS is absent.

• IF dyspnea is present, bronchitis is absent, and chest pain is absent, THEN RS is present.

• IF sputum is present, a positive pneumonia x-ray is absent, a positive pleural effusion

x-ray is absent, and asthma is absent, THEN RS is absent.

Figure 16: M5: A second plausible model of respiratory syndrome (RS) extracted from

training data.
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ID: 16
Original Rule:
(CHEST PAIN is ABSENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)

Exception Rule:
(FLU SYMPTOMS is PRESENT) and
(CHEST PAIN is ABSENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)

Is the exception rule plausible?
Was this a difficult case to decide?

ID: 111
Original Rule:
(X RAY PULMONARY EDEMA is ABSENT) and
(X RAY PNEUMONIA is ABSENT) and
(X RAY PLEURAL EFFUSION is ABSENT) and
(WHEEZING is ABSENT)
implies (RESPIRATORY SYNDROME is ABSENT)

Exception Rule:
(HEMOPTYSIS is PRESENT) and
(X RAY PULMONARY EDEMA is ABSENT) and
(X RAY PNEUMONIA is ABSENT) and
(X RAY PLEURAL EFFUSION is ABSENT) and
(WHEEZING is ABSENT)
implies (RESPIRATORY SYNDROME is PRESENT)

Is the exception rule plausible?
Was this a difficult case to decide?

Figure 17: Two example revisions as presented to the domain expert.
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Table 13: The performance of M4 and M5 before and after applying revisions.

Model Revisions Added Resolved Anomalies New Anomalies Total Anomalies

M4 None 0 19 19

(Figure 15) All 3 5 21

Defensible 9 1 11

Indefensible 11 6 14

M5 None 0 20 20

(Figure 16) All 12 1 9

Defensible 7 0 13

Indefensible 8 1 13

employed knowledge beyond the features and rules present within the model to ascertain the

defensibility of the exception rules.

From each original model, we created three new models using the resulting revisions

suggested by Kalpana and rated by the domain expert. As with the prior experiments, one

model contained all the revisions to the base model, while the other two used either of the

defensible or indefensible ones. We applied these three models, along with the associated

original model, to the 92 cases originally set aside for testing purposes. The number of

anomalies remaining within the test set determined each model’s performance. A perfect

theory should encounter no anomalies, so fewer anomalies indicates better performance.

Table 13 displays the results of applying the models to the test data. The first base

model shown in Figure 15 produces 19 anomalies. Adding the indefensible rules resulted in

21 anomalies, of which 16 remained from the base model and 5 came from the new rules.

The model revised with the defensible exception rules fared better with only 10 anomalies

remaining from the base model. Additionally, the defensible revisions resulted in the addition

of only one new anomaly. Incorporating all the anomaly resolutions into the original model

left us with 14 anomalies, of which 8 came from the original rules.
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The second base model shown in Figure 16 led to slightly different results. The origi-

nal model yields 20 anomalies, while adding either the defensible or indefensible revisions

reduces this number to 13. While the model containing indefensible revisions produces a

new anomaly, that model also resolves one anomaly from the original 20 not resolved by

the defensible revisions. Combining both sets of revisions with the original rules leaves nine

anomalies, of which, only the one introduced by the indefensible revisions is not included in

the original 20.

Although the small sample size of this data set and the examination of only two models

precludes significance testing, we can interpret the results in light of our previous findings

with synthetic data. As in those experiments, the addition of defensible revisions to the base

model improves that model’s performance. However, in one instance, the set of indefensible

revisions appears to do just as well. Also, it seems that at times, those revisions enhance

the defensible ones. Since the results differ based on the original model, we examined them

more closely.

First, we consider M4, the model given in Figure 15. In this case, the defensible revisions

performed much better than those not judged to be defensible. The defensible exception rules

not only led to the resolution of more anomalies, but also created fewer new anomalous data.

The poor performance of the unacceptable revisions carried over to the model containing all

the rules. That is, although the unacceptable rules accounted for anomalies unresolved by

the acceptable ones, the addition of the new anomalies nullified the benefit of combining all

the revisions. These results aligned with both our intuition and the results found with the

synthetic data. While we consider it somewhat interesting that the defensible revisions can

lead to new anomalies, we are not surprised due to the complexity of the domain and the

likely presence of noise within the data set.

Second, we examine M5, shown in Figure 16. The results in this experiment surprised

us given our prior findings. While the defensible revisions did quite well, the unacceptable

rules actually resolved more of the original model’s anomalies. Here performance does not

reflect the benefits of defensibility. However, by using the acceptable revisions, we avoided

introducing rules that result in new anomalies. Thus we presumably incorporated fewer

incorrect revisions than if we had selected the unacceptable rules. The same effect existed
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when looking at the prior model, and we may ultimately find that choosing defensible re-

visions leads to fewer future revisions. That is, since defensibility helps us introduce fewer

incorrect rules, a revision system need not spend time correcting for those rules.

Perhaps the most surprising result from this final experiment was that applying all the

revisions improved performance over the application of just the defensible ones. This finding

leads us to consider the secondary benefit of defensible revisions: justifiability. First, when

no discernible difference in the performance of two models exists, we should select the one

that “makes sense.” This reasoning allows us to select among the models incorporating one

or the other of the sets of revisions. That is, since the defensible anomaly resolutions lead

to a model more consistent with background knowledge, we should select it. Second, we

may find, as in this experiment, that adding all the revisions leads to the best performance;

however, we must analyze the tradeoff between accuracy and this secondary characteristic.

The pattern, if it can be called such in this limited study, shows that the cautious

approach is to accept only the defensible revisions. That is, when we added the new rules

to Models M4 and M5, the defensible revisions created the fewest new anomalies and always

improved the performance of the model. The indefensible rules tended to introduce more

anomalies and in some cases decreased the model’s performance. Even when the performance

is increased, the indefensible revisions will contradict our domain knowledge and will force

additional revisions. Currently, we leave the decision of which revisions to apply with the

user, assuming that he will best know when to sacrifice understandability for accuracy.

4.3 CONCLUSION

The results of this chapter, though exploratory, indicate that defensible revisions at times

improve predictive accuracy over indefensible ones. From an intuitive standpoint, defensible

revisions will better fit with our knowledge, presumably giving us a more favorable opinion

of the final model. Experimentally, it seems that defensible anomaly resolutions allow us to

cautiously improve our model. That is, we can avoid the addition of incorrect knowledge.

This finding is also intuitive given that when we consider a revision’s defensibility, we esti-
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mate its prior probability given a large network of unrepresented information. In the next

chapter, we examine ways to identify defensible hypotheses so that we might capitalize on

their advantages.

67



5.0 DEFENSIBILITY

In Chapter 3 we showed that an anomaly-driven approach leads to the production of ac-

ceptable revisions. We followed this by finding that in some situations, the identification

and application of defensible revisions can increase predictive accuracy. We now turn our

attention to the task of identifying defensible revisions automatically. That is, we wish to

identify heuristics that will enable us to segregate the acceptable from the unacceptable.

While we could use an estimate of the predictive accuracy of the rule, our experiments in

Chapter 4 showed that it was not always the most desirable measure. Therefore, we intro-

duce syntactic and semantic measures of defensibility guided by the virtues of hypotheses

discussed by Quine and Ullian [47].

5.1 CONSERVATISM

5.1.1 What Is Conservatism

The conservatism of a hypothesis (in our case, a revision), according to Quine and Ullian

[47], reflects the amount by which the hypothesis conflicts with current beliefs. These beliefs

may consist of the collective knowledge of a scientific domain, one person’s individual con-

victions, or the expectations of a committee. Regardless, some decision-making entity must

assess the degree of conflict of the new belief with some combination of implicit or explicit

knowledge and rule upon its acceptability. This degree of belief may involve a strict measure

of conflict based upon violations of the law of the excluded middle, or as is more likely, it
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could incorporate flexibility to allow for uncertainty. More interesting than an exact, formal

definition of conservatism is how it can be and has been used in the process of altering beliefs.

Beginning with an example, suppose that we have, by our faith in the church, decided

that all celestial bodies are perfect, crystalline spheres. After peering through our newly

invented telescope, we notice that the Moon has what appear to be mountainous regions.

One approach to resolving the anomaly involves claiming that no celestial bodies are perfect

spheres. This hypothesis is minimally conservative in that it contradicts our original theory

in every possible case. Alternatively we might claim that the mountainous objects are, in

fact, an illusion created by the telescope. This statement fully conserves our original theory,

but it may not conserve our theory of optics (if we have one).

Between the two extremes of reinterpreting the data and casting away our beliefs lie

several revisions, each with its own level of conservatism with relationship to our beliefs. To

explain our awkward observation of the Moon, we could claim that the Moon is a singular

exception to our theory of celestial bodies. This new revision contradicts a small portion of

our original theory, since all other celestial bodies remain perfect spheres. Additionally, we

need not question the nature of observations produced by the telescope, therefore retaining

most of our original theory without sacrificing our knowledge of optics.1

Although conservatism is often discussed in the context of a single theory, our example

shows that an anomaly resolution impinges upon other beliefs as well. That is, contextual

beliefs of which we are not always aware bind our thoughts. The complexity of our belief

networks makes a complete analysis of conservatism difficult if not impossible. Even adjusting

for those expectations specific to a single individual, we encounter assumptions such as visual

acuity that are difficult to formalize but general enough to deserve attention.

In some circumstances, we can reduce the complexity of our belief network. For instance,

we may make assumptions about the correctness of our data. If we consider the data to be

perfect, then we bar from thought all anomaly resolutions questioning that data. Alterna-

tively, we can associate a degree of belief with each datum. With this approach, revisions

1Note that naming specific individual objects as exceptions violates Goodman’s principle that statements
of a theory be lawlike [24].
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that question the validity of a value begin with a level of conservatism corresponding to the

degree of belief.

Simplifying assumptions, such as whether the data are perfect, serve the purpose of ab-

stracting away some of the multitudinous beliefs that influence us. By finding the right level

of abstraction, we can better approximate the conservatism of a hypothesis without resorting

to a full belief-mapping of any particular individual. Thus, when calculating conservatism,

we attempt to identify those beliefs relevant to the anomaly resolution, situated in the par-

ticular domain, and generalizable across domain experts. In effect, we limit the scope of the

beliefs that must be checked against our revision.

After defining the scope of beliefs that may be revised, we can evaluate the conservatism

of a particular revision. Returning to the earlier example, we considered the hypothesis that

the mountains on the Moon were fabrications of the telescope. To evaluate the conservatism

of this hypothesis, we need to consider the theory of optics as well as our own prior experiences

with the same telescope. However, we can simplify our analysis of the hypothesis by assuming

that the telescope conveys an accurate image of the Moon. Thus we reduce the difficulty of

calculating conservatism by condensing a subnetwork of theories into a single, stated belief.

5.1.2 Conservatism’s Role in Discovery

Before using conservatism to judge the defensibility of a revision, we should determine

whether the measure serves any useful purpose. In apparent support, Kuhn [31, 32] states

that the majority of scientific research consists of puzzle-solving work that brings an estab-

lished theory closer to observed effects. He claims that this strict adherence to the current

model, which embodies itself in the act of fine-tuning the model, enables the scientist to

identify nontrivial anomalies. That is, “their recognition and evaluation . . . depend upon a

firm commitment to the contemporary scientific tradition.[32]”

Shapere [55] also notes the conservatism inherent in science, writing, “science builds on

what it has found it can trust, what it has least specific reason to doubt and what it has

found most broadly applicable.” He continues to write that in the face of an unexpected

observation, “we begin by suspecting those [ideas] which are, in light of our previous well-
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founded beliefs, most likely to be at fault, and least costly to give up.” Shapere’s words

are more descriptive than explanatory, but they are positioned in an essay espousing a

progressive view of science. Additionally, he implies that progress results in part from this

rough ordering in which beliefs scientists examine their beliefs. This order is, as mentioned

above, guided by the likelihood of fault and the intellectual cost of modifying one’s beliefs.

Although Kuhn’s view of science as an arational activity contradicts Shapere’s progressive

view, both philosophers recognize that conservatism plays a primary role in the modification

of theories. For Kuhn, the scientist mostly solves puzzles within the context of the prevailing

theory. Conservatism holds sway until a mounting collection of anomalies forces scientists

in the field to switch to the revolutionary mode of discovery. Kuhn claims that this mode

leads to a radical change in the theoretical structure. However, he does not assert that the

change will bring us closer to universal truth.

For Shapere, there is only one mode of science. In his model, the scientist’s conservatism

leads to a strategy of theory change based on progressive deepening. That is, using a tuning

operation, scientists always resolve anomalies at the shallowest level possible. This constant

tuning results in the removal of doubt about our understanding of the world. So, on the one

hand, conservatism results in the gradual accumulation of anomalies, and on the other hand,

it keeps us from altering our theory too drastically. In either case, conservation of beliefs is

a core concept that enables theory change.

Kuhn and Shapere’s models of science imply that conservatism leads to scientific discov-

ery. However, discovery may occur in spite of conservatism instead of as its result. What,

then, keeps us from approaching each anomaly as a challenge to the very core of our beliefs?

Quine and Ullian [47] write that extreme conjectures yield more room for error and that

when we make “a leap in the dark the likelihood of a happy landing is severely limited.”2

Additionally taking small steps helps us create a more detailed map of our surroundings.

Thus we build a better understanding of how the anomaly affects our beliefs and how we

might best respond.

2For Popper [45], extreme conjectures that are easier to refute become stronger as attempts to refute
them fail. So in his view, bold conjectures make good science.
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5.1.3 The Logic of Belief Revision and Conservatism

The theory of belief revision established by Alchourrón, Gärdenfors, and Makinson (the

AGM theory) [2] relies on conservatism in the learning process. This theory attempts to

capture the properties of operators that expand, retract, or revise a current set of beliefs.

Expansion occurs when we incorporate a new belief that does not contradict any prior beliefs.

Retraction involves the removal of a belief. And revision happens when we introduce a belief

that conflicts with our current expectations. When conflict arises, we must alter our beliefs

to maintain consistency.

When revision is necessary, there may be a large number of possible alterations. To guide

selection, we appeal to epistemic entrenchment [20]. Epistemic entrenchment defines the

properties of an ordering among beliefs that captures their interdependencies. Pagnucco’s [43]

overview summarizes the key aspects of these properties. Included is the dominance postulate

that states that when one formula entails another, the first formula is less entrenched than

the one entailed. That is, we cannot retract the entailed formula alone—the entailing formula

must also be removed. Therefore, removing only the entailing formula results in less change

to the original belief set.

This postulate apparently embodies conservatism. We are expected to prefer the removal

of less entrenched beliefs—those beliefs that require fewer additional beliefs to be retracted.

Thus we conserve more of our original belief set. This reflects what has been called “the

hallmark of the AGM postulates” [13]—the general notion that we should emphasize conser-

vatism during both retraction and revision.

This intuition has remained largely unchallenged in the AGM literature. However, Rott

[51] argues that any dependence on conservatism is illusory. First, he claims that the logic

of belief revision fails to express conservatism as traditionally understood. That is, on the

one hand, no clear method for determining the “minimal mutilation” of a belief set exists

when two revisions are not strict subsets. Thus, the best we can hope for is a partial

ordering of revisions. Second, Rott asserts that the AGM theory actually allows us to keep

a less entrenched belief over a more entrenched belief when a successful revision requires the
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retraction of just one of the two. Regardless of these comments, Rott continues to appeal to

conservatism [50, 52], although his context has changed.

5.1.4 Problems with Conservatism

While Rott limits his critique to the logical difficulties of conservatism, in practical use,

we claim that such a measure is too coarsely grained. In the most straightforward case,

a set of possible revisions may simply extend a theory. Thus we can append beliefs that

do not contradict our theory. Conservatism has nothing interesting to say about these

completely additive changes because each alteration is maximally conservative. In actuality,

the measure’s real weakness comes not from the lack of retraction, but from the equivalence

in the measures of different revisions that all preserve conservatism.

Multiple revisions may be equally conservative even in the presence of a preference. For

instance, consider adding the statement that Earth-like entities can have mountains to the

original theory, which says that all celestial bodies are perfect spheres. Seeing mountains

on the Moon, we can conjecture both that the Moon is an Earth-like entity and that large,

yellow entities in the night sky have mountains. Either way, we contradict our prior beliefs.

The first revision challenges the Moon’s status as a celestial body, and the second revision

creates a special class of celestial bodies. Both revisions can be viewed as equally conservative

since they only alter our perception of the moon. However, intuitively we prefer the first

over the second.

As a more mundane example, consider the theory that all basketballs bounce. Now add

the belief that no flat objects bounce. If we then see a small, flat basketball fail to bounce, we

may entertain two equally conservative conjectures: that all non-flat basketballs bounce and

that all non-small basketballs bounce. Here the first conjecture is preferable in the context

of our theory, but again we cannot express the difference in terms of conservation of beliefs.

Thus conservatism may not be detailed enough to fully measure a revision’s acceptability.

Another indication that conservatism does not solely influence the acceptability of a

revision comes from Kuhn’s concept of essential tension [32]. Conservatism can be the enemy

of discovery, and a scientist must know when to sacrifice an explanation that retains prior
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beliefs in place of a revolutionary conjecture. After years of investigation, Kepler ceased

adding circles to the Copernican view of the solar system [30]. Instead, he replaced the

complex orbits of the planets with simpler, elliptical paths. Thus, while Kepler could have

continued building up the theory that orbits consist of various circles, thereby conserving

prior beliefs, he chose to pursue a hypothesis that rewrote centuries of misconceptions. This

example alone indicates that conservatism, at least in science, is not the only measure used

when selecting among competing hypotheses. To address these problems, we once again turn

to The Web of Belief [47], and note that other virtues of acceptable hypotheses interact with

conservatism.

5.2 MODESTY

After discussing conservatism, Quine and Ullian suggest modesty as a virtue of hypotheses,

presenting it in two forms. On one hand, they base modesty in logical implication. That

is, given two hypotheses X and Y such that X → Y , Y is the more modest of the two.

On the other hand, the authors relate modesty to familiarity. Thus suppose someone walks

outside to collect his newspaper, only to find it missing. He might entertain the belief that

the newspaper was never delivered or he might make the less modest conjecture that the

editor-in-chief refused him service. Both this interpretation of modesty as familiarity as well

as its relationship to logical implication address the weaknesses of conservatism.

5.2.1 Modesty via logical implication

When describing the logical interpretation of modesty, Quine and Ullian provide a single,

opaque example that deserves elaboration: “A hypothesis A is more modest than A and

B as a joint hypothesis.[47]” Compare the statements “The Moon is a perfect, crystalline

sphere” and “The Moon is spherical in shape.” Here, the former statement implies the latter,

thus the latter is the more modest of the two. Figure 18 gives a graphical representation of

the relationship. The circle labeled B denotes the various situations where B can be true.
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Figure 18: The relationship between two statements A and B when A implies B. According

to Quine and Ullian [47], B is the more modest of the two since it is true in at least the same

situations where A holds and may be true in others.

The smaller circle, A, denotes those cases where A can be true. This relationship illustrates

that the consequent must occur at least as frequently as the antecedent. The consequent

may obtain in cases where the antecedent does not, but not vice versa. Therefore the act of

asserting the consequent is more modest because the consequent is more often true.

While this approach to modesty seems reasonable, its use in the assessment of the accept-

ability of a hypothesis requires caution. Suppose we have decided to take the modest route

and claim that the Moon is spherical in shape. We can instantly create a more modest hy-

pothesis via disjunction. For example, the conjecture “The Moon is spherical in shape or the

Moon is made of green cheese,” is logically weaker than the first disjunct alone (A → (A∨B)).

In fact, we can continue to increase the modesty of our hypothesis by multiplying the dis-

juncts with arbitrary claims (e.g., “or life is like a teapot”). Such a shortcut to acceptability

degrades the utility of modesty.

5.2.2 Modesty as Familiarity

The logical approach to modesty fails because it lacks a method for selecting meaningful

disjuncts. As a result, we introduce a semantic method such that the more familiar the
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events or terms within a conjecture, the more modest that conjecture. This approach yields

a more experiential version of modesty than that of logical implication. In particular, modest

revisions will refer to events or properties that have been noted to occur frequently as opposed

to those that are unique or rare. In the same vein, the use of familiar terms or concepts just

seems more modest than appealing to newly created terms such as “grue.”

Grueness was used by Nelson Goodman [24] in his classic work on the familiarity of terms

to illustrate the concept of entrenchment (not to be confused with epistemic entrenchment,

which refers specifically to held beliefs). Entrenched terms are those that are more often used

to describe a particular domain. For example, in the domain of physics, ‘mass,’ ‘gravity,’

and ‘charge’ are well entrenched terms while ‘bitter’ and ‘cagey’ are not. Goodman argued

that the entrenchment of a term indicates its projectibility, where projectibility describes

how useful a term is when predicting future events. A term’s entrenchment can be measured

and may be equivalent to its familiarity.

The ideas of entrenchment and projectibility are situated within a larger argument pre-

sented in Fact, Fiction, and Forecast [24]. Here, Goodman replaces Hume’s riddle of induction

[27] with a new one. This new riddle can be summarized as follows. Given some observation

that we wish to generalize, we must choose those observed features that seem best suited for

this purpose. What is the nature of this process of selection, and when do we find generaliza-

tion useful? Goodman proceeds to argue that there is no simple answer to these questions.

However, he does present a reasonable solution for choosing features for use in a new hypoth-

esis. His method requires the recollection of those features used in prior hypotheses. That is,

despite the true utility of a feature, when creating new hypotheses, we tend to (and should)

favor those features that have been used in the past. Such a hypothesis possesses modesty

because its included terms will not add new, untested concepts to the original theory.

The familiarity of terms extends to the familiarity of events. To illustrate the interaction

of familiar events with the modesty of a hypothesis, suppose that this winter the local news

reported an increase in cases of respiratory syndrome (RS) within the country. The various

strains of the influenza virus are common causes of RS. Since an increase in influenza typically

occurs during the winter months, the hypothesis“The rise of RS is due to the normal temporal

cycle of influenza outbreaks” is highly modest. In comparison, the hypothesis “The rise of
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RS is due to the spread of anthrax by a bioterrorist” is riskier. The latter hypothesis hinges

on an event that is both far less frequent than that described by the former and relatively

less familiar.

The modesty of the RS hypotheses also relates to the number of assumptions that they

require. The former hypothesis asks that we assume that the past rise in influenza infection

serves as evidence to the current rise. The latter requires us to hold beliefs about an indi-

vidual with malicious intent able to gain access to a controlled substance and distribute it

successfully. Without any further evidence than the news report, the virtue of modesty tells

us that the first hypothesis is more plausible.

An additional aspect of modesty related to familiar events involves the activity required

by the hypothesis. That is, in our example, the cycling of influenza outbreaks appears to

occur naturally without the need for explicit action. On the contrary, the malicious spread

of an infectious agent presumably requires an intentional act and substantial effort. While

the latter hypothesis may reflect the truth of the situation, “the counsel of modesty [is] that

the lazy world is the likely world.[47]”

5.2.3 The Weakness of Modesty

In summary, logically weaker hypotheses are preferable because they likely refer to more

events than their antecedents. In addition, hypotheses using well-entrenched terms are prefer-

able to those that do not. That is, referring to events and concepts expected in situations

similar to the current context yields a more acceptable hypothesis. While the justification for

the use of entrenched terms may appear unconvincing, it is, itself, based upon the principle

of induction—namely, it has worked in the past.

Given this new measure of defensibility, recall that we introduced modesty as a criterion

that would allow us to choose between two hypotheses that equally conserve the original

theory. Returning to the example theory about mountains on the moon, remember that we

had difficulty choosing between the two revisions “The Moon is an Earth-like entity” and

“Large, yellow entities in the night sky have mountains.” Conservatism provided no help.

However, modesty comes to the rescue. The concept of being Earth-like (as in “celestial

77



bodies are not Earth-like”) is more familiar in this context than that of being large and

yellow. While other celestial bodies may be large and yellow, we do not expect that to be an

important, differentiating (i.e., projectible) characteristic. Thus we accept the first revision.

Suppose that we had no entrenched terms for describing the variation of the moon. For

instance, we may have to choose between the revisions “Yellow entities in the night sky

have mountains” and “Large objects in the night sky have mountains.” Should we form a

disjunction of these two revisions creating a more modest conjecture? Possibly, but why not

add “Objects made of green cheese have mountains” to the disjunction as well? After all, the

resulting statement would be logically weaker. To combat this peculiarity, we will introduce

a third virtue of hypotheses: simplicity.

5.3 SIMPLICITY

Simplicity has attracted much attention, yet it remains poorly understood. Originally, it was

thought to be a quality of nature3. However current opinion ascribes simplicity to theories

and hypotheses themselves4. Since this shift of attribution, numerous authors have worked

to define simplicity [22, 24, 45, 53, 56], but a formal description remains evasive. Most

recently, researchers have appealed to computational theory and Kolmogorov complexity for

a solution [18, 37, 60], but these formalisms fail to solve the fundamental problems addressed

most notably by Goodman [23] (see Section 5.3.3) . Guided by the description given in [47],

we sidestep the difficulty of establishing a complete definition and instead show how even

incomplete notions of simplicity, when mediated by modesty, can be useful when assessing

hypothesis plausibility.

3Some still hold this belief [63].
4Interestingly, this ontological shift is in itself a sacrifice of conservatism for simplicity. While it may be

the case that nature is, in fact, simple in design, the process of identifying such simplicity on all fronts is far
more daunting than the task of showing an initial psychological preference for ideas of limited complexity as
in [40].
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Figure 19: In Karl Popper’s view [45], the line in the right image is simpler than that in the

left due to its high falsifiability. In contrast, Herb Simon emphasized [56] that the line in

the left provides a simpler model of the data.

5.3.1 Simplicity of Equations

In [47] Quine and Ullian do not so much define simplicity as they explore various descriptions

that have arisen in the philosophy of science. First, they describe simplicity in terms of fitting

a curve to data. For example, given observations plotted on a Cartesian plane, the curve

that fits the data reasonably well while having the least amount of curvature is considered

the simplest generalization. While not the first to take this perspective, Karl Popper [45]

expounded on it and justified his approach through an appeal to falsifiability. Here, the more

probable the hypothesis, the less falsifiable it is. Thus, since y = ax describes a wider range

of cases than y = 3x, the latter is simpler and should be preferred as it is therefore more

falsifiable.

Simon [56] revisits Popper’s work, drawing a distinction between the simplicity of a

hypothesis about data and a hypothesis about the world. Popper made the claim that

simpler hypotheses are less probable. In Simon’s view, this stance makes sense only when

generalizing to future instances. When creating hypotheses about data under examination,

the plot on the left in Figure 19 is both simpler and more probable within the context of

those data. As Simon mentions, there is no conflict among the separate claims of simplicity
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attributed to these situations. Therefore, in both cases, a preference for simplicity appears

reasonable, but as Popper mentions (referring to [61] and [64]), there are no established

“logical or epistemological advantages the simpler law is supposed to possess, compared with

one that is more complex.[45]”

5.3.2 Simplicity of Programs

Before continuing our examination of Quine and Ullian’s treatment of simplicity, we need to

look closer at this virtue in the context of computer programs. Simon’s informal treatment

[56] presents two programs that are able to generate data that are consistent with a particular

theory. The first program is stochastic, requires two parameters, and was implemented in

15 program statements. The second program requires no parameters, is deterministic, and

was implemented in 27 statements. Simon asserts that the latter program, regardless of

the parsimony of the former, is simpler. Here, he again sides with Popper, stating that the

number of parameters is the real determiner of simplicity, not the length of the program.

In contrast to Simon’s claim, some proponents of Kolmogorov complexity insists that

the shortest program that will generate the data is the simplest [37, 54, 60]. In this context,

given some initial data, we identify the programs in some universal language that output

that data. These programs (i.e., hypotheses) are given a prior probability based on their

length such that shorter programs are considered more probable. In the case that several

programs of the same length are capable of producing the observed data, we are enjoined

to keep all such hypotheses on the table. As for the introduction of parameters, Bosch [60]

suggests that we should sum the probabilities of each possible instantiation of the program

where the parameter is specified.

Consolidating the perspectives of Simon, Popper, and the Kolmogorov pundits with re-

spect to program length seems daunting at best. While Simon and Popper agree that the

number of parameters increases the complexity of the program,5 Popper’s definition of sim-

plicity is equivalent to falsifiability. Simon acknowledges such a connection, but he refuses to

5Note that a vector or matrix may be considered a single parameter, thereby confounding the dependency
on the number of parameters as a measure of simplicity. Nelson Goodman gives the most thorough treatment
of this problem, which we discuss in Section 5.3.3.

80



refine simplicity beyond an intuitive notion related to the degrees of freedom in a hypothesis.

Additionally, Simon allows for simplicity to result in an increase of prior probability when the

hypothesis has been extracted from data. This view corresponds to the use of Kolmogorov

complexity. That is, programs discussed in the context of Kolmogorov complexity are always

extracted from the data, and simplicity directly correlates with probability. Simon criticized

Popper and others for not treating this method of hypothesis generation, claiming that they

assert that “hypotheses spring full-blown from the head of Zeus.[56]” With this distinction

in mind, Simon elaborated his position, writing that Popper’s notion of probability refers to

the actual state of nature described by a hypothesis and not to the hypothesis itself.

5.3.3 Problems of Simplicity

Taking Simon’s perspective, we ignore Popper’s attribution of probability for our purposes,

but further problems lie ahead. If we are to employ the Kolmogorov measure to capture

simplicity, we must decide how to interpret a program that accepts parameters. If we were to

sum the probabilities of the program such that every parameter is fully specified in all possible

ways, functions with free variables would be more probable. This method captures Popperian

simplicity, unfortunately there seems to be no intuitive transformation that would convert

the value into the measure of simplicity desired by Simon. Even if such a transformation

were found, Kolmogorov complexity presents another stumbling block.

A basic assumption of all simplicity measures based on Kolmogorov complexity is that

the set of programs is enumerable. If our programs can employ real numbers as constants

or parameters, then such an assumption is too strong. We might claim that in general, the

precision of our parameters or constants is limited by the precision of our measurements. So,

for any number, we can establish a fixed precision making our programs enumerable again.

As a counterexample, consider a program that takes the area of a circle as a parameter.

Here our level of precision is limited by two factors: our ability to measure the radius of the

circle, and the number of digits of π that we use. While we may not be able to improve

our rulers, we can constantly add a more exact approximation of π. Thus measurement

is not a limiting factor to the level of precision we may achieve. The point here is that
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requiring our set of programs to be enumerable imposes limits on the programs that we can

consider, and these limits are fixed by neither logical nor natural concerns. That is not to say

that Kolmogorov-based measures of simplicity are useless, but they contain (beyond their

selection of representation) a component of arbitrariness that needs recognition when the

measures are used.

Finally, whenever we discuss simplicity with relation to the number or form of parameters

of some formalized sentence, we must acknowledge the problem addressed by Goodman.

In [23], he writes, “We can always, by a calculated selection of vocabulary, translate any

hypothesis into one of minimal length.” That is, our terminology can mask the complexity

of our statements. Goodman continues to write, “To reject unfamiliar predicates wholesale

in favor of familiar ones would be to disallow the introduction of needed new terms into

scientific language.” So he enjoins us to be cautious in our description of the world, but he

gives no logical or well-defined guide when to posit new terms. At best, he might suggest

that simpler explanations favor entrenched predicates (those in common usage), though we

may introduce projectible traits (those apparently good for induction) if they can lead to a

general simplification of a theory as a whole.6

5.3.4 The Subjectivity of Simplicity

Beyond their discussion of simplicity as related to the order of an equation, Quine and

Ullian state that simplicity is, more than conservatism and modesty, a matter of personal

preference. As Kuhn claims [30], Copernicus developed his model of the solar system because

of his belief that the Ptolemaic model failed to satisfy his Neoplatonic notion of harmony.

Although Copernicus’s model failed to be either substantially simpler or more accurate than

the Ptolemaic, he was driven by his beliefs about the simplicity of the circle to reformulate

cosmological theory.

Since simplicity possesses such a subjective flair and there is little to suggest a deep

relationship between simplicity and hypotheses, we have chosen to adopt a straightforward

6Compare Goodman’s advice to Einstein’s statement, “It can scarcely be denied that the supreme goal
of all theory is to make the irreducible basic elements as simple and as few as possible without having to
surrender the adequate representation of a single datum of experience.[16]”
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interpretation. For our purposes, the more easily testable an anomaly resolution, the simpler

it is. While the vagueness of “easier” in this context may rightfully cause unease, we promise

to quantify it once we discuss the details of our implementation. Naively, we might say

that the simpler revision requires fewer observations than its alternatives. This claim fails to

address why hypotheses referring to density appear simpler than those requiring measurement

of mass and volume, but it gives us a foundation for developing a solution.

With our, admittedly vague, restatement of simplicity in mind, we now address how

simplicity balances modesty’s affinity for disjunctions. We mentioned that, when choosing

among the anomaly resolutions A and A ∨B, modesty would have us prefer the latter. The

problem is that the formal definition of modesty would have us multiply disjuncts indefinitely

to improve the acceptability of our revision. Assuming that each disjunct describes an

observable feature, we can call on simplicity to limit the ultimate size of the conjecture.

Thereby we avoid giving preference to the infinitely long revision.

5.4 THE IMPLEMENTATION OF DEFENSIBILITY

Having explored possible components of a defensibility measure and discussed their interac-

tions, we now describe their implementation within the context of Kalpana. To investigate

the benefit of external domain knowledge (i.e., that not contained within the model), we de-

veloped both syntactic and semantic measures. The syntactic measures use only the explicit

model of the domain. Within Kalpana this means that these measures analyze the given

rule set. The semantic measures use domain knowledge acquired from an expert in the field

relating to the features in the data set. For example, we asked our expert to estimate feature

entrenchment using his full knowledge of the domain of which the model is a small compo-

nent. This information was gathered with our understanding of conservatism, modesty, and

simplicity in mind.

83



• IF cough is present, THEN RS is present.

• IF wheezing is present, THEN RS is present.

• IF sputum is present, THEN RS is present.

• IF a pneumonia x-ray is positive, THEN RS is present.

• IF dyspnea is present, THEN RS is present.

Figure 20: M1: Overly general model of respiratory syndrome (RS).

5.4.1 Conservatism

We begin the description of our implementation with conservatism. We gave an abstract

definition of this concept in Section 5.1, stating that conservatism is the amount by which

a hypothesis conflicts with current beliefs. For Kalpana in its uninformed state, the current

beliefs consist of the given model. The hypothesis is the generated anomaly resolution.

Since for Kalpana a revision must be an exception rule, it already conflicts with one rule

in the model. Additionally, the revision may be an exception rule (either intentionally

or unintentionally) to other rules. For instance, consider the basic model of respiratory

syndrome (RS) given in Figure 20. The revision “IF sputum is present and cough is present

THEN RS is absent” conflicts with both the first and third rules. In this case, we would

want our measure of conservatism to reflect the full degree of syntactic conflict to accurately

capture the defensibility of the revision.

To measure conservatism, Kalpana counts the number of rules that a particular revision

specializes. In the prior example the revision directly specializes two rules. To ensure that

Kalpana’s measure of conservatism corresponds with our intuitive notion of the concept, we

can chose to normalize the raw score by dividing by the total number of rules in the model

and subtract the result from one. Thus conservative revisions have scores closer to one. To

illustrate, the model in Figure 20 contains five rules, two of which conflict with the exception

rule from the previous paragraph. As a result, that exception rule’s conservatism equals
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0.6 (three-fifths of the rules in the theory do not conflict with the explanation). While this

measure seems reasonable, it can weaken in utility as the size of the model increases.

The limitations of Kalpana’s uninformed approach to conservatism become evident when

the data contain more features than represented in the model. Within the data for RS, there

exist 65 binary attributes (giving a total of 132 features) plus the binary target class (RS is

present or absent). The model in Figure 20 refers to five of the 132 total features and cannot

indicate the conservatism of a revision based on any of the other features. Additionally, given

a rule with multiple features in the antecedent, we are limited to evaluating conservatism

of revisions that contain all of the original rule’s features. For example, the rule “IF cough

is present and congestion is present, THEN RS is present” can only be used to determine

the conservatism of revisions matching the form “IF cough is present and congestion is

present and (some conjunction of features), THEN RS is absent.” To increase the utility of

conservatism, we must know something more about all features, regardless of their presence

in the model.

We designed the semantic measure of conservatism to address the limitations of the

syntactic one. To this end, we encoded knowledge consisting of suspected relationships

between each feature and each target class. For example, the feature “cough is present”

supports the outcome, “RS is present.” Using this information, Kalpana assigns a score of

conservatism by examining all the features in the rule. When a particular feature present

in the revision supports a contradictory outcome, then the program lowers the conservatism

score of that revision. An advantage to this approach is that the system can now reason

about individual features added to a revision as opposed to considering the revision as an

indivisible whole. That is, while the syntactic measure compares rules to other rules, the

semantic measure compares features to knowledge.

As an example, consider the relationship between chills and RS. The presence of chills is

positively associated with the presence of RS, however this link is not evident from the model

in Figure 20. With this new information, Kalpana can determine that “IF cough is present

and chills are present, THEN RS is present” conserves prior beliefs, while the hypothesis “IF

cough is present and chills are present, THEN RS is absent” is contentious. That is, using
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the presence of both cough and chills to support the absence of RS when both features give

evidence for RS’s presence makes the second revision indefensible.

Although in the above example, we are able to reason about the feature “chills are

present,” we cannot assume the inverse. That is, knowing that the presence of chills is

associated with the presence of RS tells us little or nothing about how the absence of chills is

associated. So the revision “IF cough is present and chills are absent, THEN RS is present”

cannot be judged based on our known relationship between chills and RS. This limitation

is a property of the domain, and may not apply in some domains. More specifically, the

absence of a symptom in general does not contain the same amount of information as its

presence 7.

Kalpana’s implementation of the semantic measure of conservatism penalizes revisions

that violate explicit relationships. Through a conversation with a domain expert, we were

able to assign 63 of the 65 attributes to two categories (positive diagnoses of bronchitis or

musculoskeletal chest pain were considered ambiguous). The expert placed all attributes

that, when positive, indicate the presence of RS into the first category and all attributes

that, when positive, indicate the absence of RS into the second category. Thus of the 130

features, we have extra information about 63 for which the specified attribute is present.

Appendix D.1 lists these categories.

Kalpana calculates semantic conservatism as follows. Given a revision, and the base

rule from which that revision was created, the program examines the newly added features,

checking a single condition for each feature in the revision and not in the base rule. Does that

feature belong to a category that asserts a conflicting consequence? To demonstrate, let the

original rule be “IF cough is present, THEN RS is present,” and let the anomaly resolution

be “IF cough is present and chills are present, THEN RS is absent.” When evaluating the

conservatism of this revision, Kalpana looks at the new feature, “chills are present,” and

determines whether the use of this feature conforms to prior beliefs. In this case, the added

feature contradicts the consequence of the explanation. That is, the presence of chills gives

7The underlying issue is the paradox of confirmation [25]. We address the paradox by assuming that
positive confirmation is necessary in medicine (and other domains), not just the absence of negative evidence.
The semantics of each domain determine which relationships are positive.
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• IF cough is present, THEN RS is present.

• IF cough is present and lung tumor diagnosis is present, THEN RS is absent.

• IF dyspnea is present, THEN RS is present.

Figure 21: M6: An incomplete, hypothetical model of respiratory syndrome (RS)

positive support for RS. Since one of the new features of the rule violates our current beliefs,

Kalpana reduces the conservatism of the hypothesis by two.

5.4.2 Modesty

As mentioned in Section 5.1.4, limitations arise when conservatism is used to calculate de-

fensibility. For example, depending on our background knowledge, a revision that refers to

the presence of pneumonia can be just as conservative as one that refers to the color of the

patient’s hair. Additionally conservatism confers penalties, but cannot award praise. That

is, the measure leads us away from the absurd (e.g., the presence of pneumonia indicates

the absence of RS), but it fails to direct us toward the defensible. To address these limi-

tations, we developed syntactic and semantic measures of modesty. Though we mentioned

two characterizations of modesty in Section 5.2, modesty via implication and modesty via

familiarity, both of our measures were designed with the latter perspective in mind. That is,

those features more strongly associated with a particular class are deemed more valuable.

To gauge the modesty of an exception rule based solely on syntax, Kalpana examines

each new feature in the revision and evaluates that feature’s use within the model. If the

feature exists within the theory, then the system calculates the proportion of the rules in

which the feature supports the revision’s consequent to all rules in which the feature appears.

For instance, consider the model in Figure 21. The revision “IF dyspnea is present and cough

is present, THEN RS is absent” is less modest than “IF dyspnea is present and a lung tumor

diagnosis is present, THEN RS is absent.” The feature “cough is present” is associated with

the absence of RS in half of the rules in which it appears, while the feature “lung tumor
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diagnosis is present” indicates RS’s absence in all rules where it exists. Kalpana divides

the number of statements that use the new feature to predict the same consequent by the

total number of statements that contain the feature regardless of predicted class. So, more

discriminatory features are judged to be more modest8.

When a feature does not appear in the model, Kalpana calculates the proportion of rules

containing the feature’s attribute to the total number of rules in the model. Thereby the

program expresses a preference for rules that use attributes commonly associated with the

target attributes. This method of determining modesty penalizes the introduction of new

features since Kalpana divides the number of the attribute’s occurrences by the total number

of rules in the model. In the extreme case where the attribute as well as the feature is new to

the model, Kalpana will assign a modesty value of zero. Thus the system prefers to introduce

features in a familiar context followed by well recognized attributes before we attempt to

introduce entirely new terms (i.e., either attributes or features not present within the model).

After assessing the modesty of each feature in a revision, Kalpana calculates the total

modesty of the rule using the mean modesty of the features. This approach introduces a

weakness in the measure. Specifically, a feature or attribute that is new to the model can

substantially decrease the overall modesty of the revision. This characteristic of the measure

contradicts some methods of scientific discovery. For example, a scientist may include several

features in a data set, suspecting them to be beneficial to the classification task although

they are unexpressed in the model. That is, each attribute possesses some degree of modesty

not accounted for in the syntactical structure of the model, which may lead Kalpana’s purely

syntactical measure to underestimate the modesty of a revision.

When designing Kalpana’s semantic measure of modesty, we addressed both the limi-

tation of the syntactical measure of modesty and the weakness of the semantic measure of

conservatism. The domain knowledge that we chose for this measure relates to the amount

of information carried by particular attributes. That is, the presence of pneumonia yields

more information about the presence of RS than the color of the patient’s hair. While the

semantic conservatism measure could tell us which of the presence or absence of pneumonia

8We assume that those features that better discriminate between classes are more often used when dis-
cussing the revision’s consequent.
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(or which color of hair) most strongly indicates the presence of RS, all the features were

assumed to convey an equal amount of defensibility. In contrast, modesty gives the means to

decide which features better indicate a particular classification. This ability helps Kalpana

more accurately quantify defensibility by assuming that the entrenched, or more familiar,

terms are more likely to reoccur in defensible revisions.

As an illustration of this measure, consider the two attributes headache and cough.

The presence of a headache is associated with the absence of RS, while the presence of a

cough is associated with the presence of RS. The semantic measure of conservatism uses

this information to ensure that the relationships within a revision correspond to domain

knowledge. Thus the two anomaly resolutions“IF headache is present and dyspnea is present,

THEN RS is absent” and “IF cough is present and dyspnea is present, THEN RS is present”

have the same defensibility. However, in contrast to the encoded knowledge, headaches may

occur as a symptom of RS. Headaches appear in numerous situations, but since they are

also part of a general response to an infection, their presence alone gives very little evidence

toward ruling out RS. Cough, on the other hand, typically specifies a respiratory ailment

which may be within the lower respiratory system. Thus, the attribute “cough” carries more

explanatory weight than headache.

Kalpana rewards revisions for using these more valuable attributes and penalizes revisions

that use attributes that are less valuable. Our expert in infectious diseases chose, from the

65 original attributes, a subset of 44 attributes that he considered more valuable for the

current task. His selection was made within the context of identifying patients with RS.

Appendix D.2 lists these attributes. As with informed conservatism, the informed modesty

measure examines those features new to the revision, altering its defensibility based upon

the attribute’s presence in the list.

Kalpana’s specific implementation of the semantic measure adds two points to the revi-

sion’s modesty score for each valuable attribute and subtracts one point for an invaluable

attribute. As an example, let the base rule be “IF cough is present THEN RS is present.”

Suppose the following two rules are created to resolve a particular anomaly. The first, “IF

cough is present and chest tenderness is present, THEN RS is absent,” uses an attribute

listed as valuable. The second, “IF cough is present and chest pain is present, THEN RS is
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absent,” uses a less valuable attribute. The added feature in both rules is conservative, so

each rule has a base defensibility of 0. The modesty of the former rule is 2, while that of the

latter rule is −1. By these scores, Kalpana considers the first rule to be the more defensible.

5.4.3 Simplicity

Simplicity counterbalances the aberrant behavior of overly specific rules. Given our current

measure of defensibility, conservatism would allow us to add as many features as we wish so

long as they come from the correct set. Also, at least in the case of the semantic measure,

modesty rewards a similar action. In contrast, a preference for comprehensible models re-

quires that the set of rules composing a model possess a low average number of features per

antecedent. Our syntactic measure takes this approach, while the semantic measure tries to

minimize the difficulty of matching the rule’s antecedent.

We adopted a heuristic used by general-to-specific rule learners, such as RL [46], for our

syntactic measure of simplicity. Specifically, the measure favors revisions with the fewest

new features φ in their antecedents using

√
1

φ

as a score for each revision (note that φ will never equal 0 since a revision must always have

at least one additional feature). As an example, consider the revision, “IF cough is present

and dyspnea is absent and wheezing is absent, THEN RS is absent,” to the base rule, “IF

cough is present, THEN RS is present.” The revision has two more features in its antecedent

then the base rule and would thus have a simplicity score of 0.71. Although this measure

has intuitive appeal and helps protect against overfitting data, it treats all features as equal.

In some cases we may wish to rank the simplicity of the individual features according to

domain knowledge, thereby fine-tuning the measure’s effect.

Though related to the number of features, the simplicity of a revision or hypothesis is

actually the simplicity of making the observations necessary to evaluate that hypothesis.

While this distinction remains vague about what exactly simplicity is, it nevertheless refines

our notion of the concept and indicates how we should introduce semantics. For instance,
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the cost of measurement, the difficulty of accurate measurement, and the general difficulty

of obtaining a measurement all, in some sense, capture the notion of simplicity and relate to

individual features. When applying Kalpana to the RS domain, we chose the last of those

three to help approximate the actual simplicity of a revision. In particular, we had the

domain expert divide the attributes into the three categories easy, moderate, and difficult,

referring to the ease of obtaining the associated values. Appendix D.3 lists these groups.

Once Kalpana determines which categories new features in a revision belong to, it must

convert that information into a numerical score. Easy attributes are given a score of 0.5,

moderates a score of 1.0, and attributes that are difficult to observe a score of 1.5. Returning

to the example given for the syntactic simplicity measure, dyspnea falls into the easy category

and wheezing belongs to the moderate class, which gives the revision a total simplicity score

of 1.5. Although we suspect that collecting information on three easy attributes remains

simpler than gathering measurements for a single difficult attribute, we wanted to retain

a bias toward shorter antecedents. For instance, we would rather introduce a rule that

mentions one difficult attribute, such as pulmonary embolus, than introduce five of the easy

attributes, even if the required effort is lower in the latter case. Thus the scores related to

the classes are closer in value than some more precise measure of difficulty might suggest.

5.5 TESTING MEASURES OF DEFENSIBILITY

To determine whether syntactic or semantic defensibility relates to the actual acceptability

of a revision, we tested our measures in the respiratory syndrome (RS) domain. We used

the results from our experiment in Section 4.2 to evaluate the efficacy of our measures. In

particular, the measures were applied to the revisions produced by the models in Figures 15

and 16. Dr. Dowling’s assessment of defensibility was our gold standard. We conjectured

that the semantic measure of defensibility as a whole as well as the individual components

would be significantly correlated with Dr. Dowling’s ratings. We also suspected that the

syntactic measures would fare poorly both individually and in combination.
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Before evaluating the system, we acquired the domain knowledge relevant to Kalpana’s

measures from Dr. Dowling. This process lasted roughly two hours with the following three

questions driving most of the discussion. With respect to conservatism, we asked for the

most likely classification given that an individual feature was present. That is, does knowing

that cough is present lead us to believe that RS is present or that it is absent. Next we asked,

in relation to modesty, which of the 65 features provide the most valuable information in

the diagnosis of RS. Thus we claim that a revision that introduces cough as an attribute for

predicting RS is more modest than one that introduces headache, since the former attribute

is more strongly associated with RS than the latter. With our final question, we had Dr.

Dowling rate the attributes based on the difficulty of observation. So, noticing a patient’s

cough is much simpler than making a diagnosis of pulmonary embolus. The former attribute

can be observed by the physician or reported by the patient. In contrast, the latter requires

several diagnostic steps that are limited in their reliability (i.e., even x-ray results can yield

false negatives for the condition). The complete knowledge acquired from our expert is given

in Appendix D.

In addition to background knowledge, our measures require combining rules so that

each measure contributes to the defensibility of the revision. For the syntactic measures,

which all fell in the interval [0, 1], we took the unweighted mean of the rule’s conservatism,

modesty, and simplicity. With the semantic measures, we used the sum of the scores. We also

explored, using a separate set of revisions, a threshold for defensibility. In this experiment,

we set the threshold to two. Thus we have nine measures of defensibility to test against

our gold standard—the scores for the six individual measures, the two combined scores for

the syntactic and semantic versions, and the version of the semantic measurement that was

given a threshold.

Kalpana produced 90 unique revisions for the model in Figure 15 and 68 unique revisions

for the model in Figure 16. These revisions were merged into a single data set of 158 rules,

in which there were no repeated exception rules. Table 14 shows the correlation between

each of the measures and the gold standard. P-values and 95% confidence intervals are also

given.
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Table 14: The correlation of each measure of defensibility with the gold standard.

Measure r p 95% CI

syntactic conservatism -0.1395 0.0402 (-0.289, 0.017)

syntactic modesty 0.3160 < 0.0001 (0.169, 0.449)

syntactic simplicity 0.1348 0.0456 (-0.021, 0.284)

syntactic defensibility 0.0560 0.2423 (-0.101, 0.210)

semantic conservatism 0.2947 < 0.0001 (0.146, 0.431)

semantic modesty 0.0222 0.3909 (-0.134, 0.177)

semantic simplicity -0.0759 0.1716 (-0.229, 0.081)

semantic defensibility 0.1370 0.0431 (-0.020, 0.287)

semantic defensibility 0.1117 0.0812 (-0.045, 0.263)

(threshold of 2)

Of the nine measures, syntactic modesty and semantic conservatism correlated moder-

ately with plausibility, both of which were highly significant. Additionally the thresholded

and nonthresholded semantic measures of defensibility as well as syntactic simplicity and

syntactic conservatism correlated weakly with the gold standard. Although we expected

stronger correlations, we have confirmed that the semantic measure of defensibility associ-

ated more strongly with the underlying concept than the syntactic measure. From these

results, we note several interesting findings.

Contrary to our expectations, the results indicate that syntactic conservatism inversely

correlates with defensibility. That is, those revisions that conflict with more rules tend to

be more defensible. One explanation for this is that when a revision conflicts with multiple

rules, its new features are more likely to be present within the model. So, given two rules with

differing antecedents, and an exception rule to both, some of the features in the antecedent

of the first rule, but not in the antecedent of the second rule will be present in the revision.

The exception is when the second rule is a direct specialization of the first rule. In addition,
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syntactic modesty is moderately, positively correlated with defensibility. Therefore, the

nonconservative revision, which happens to be more modest, appears more defensible.

Interestingly, syntactic modesty correlated the most highly with the gold standard. We

conjecture that the performance of syntactic modesty relates to its underlying function,

which leads to a preference for a condensed vocabulary. In the strictest sense, a modest

revision introduces no new attributes or features into the model. If we assume that the

vocabulary of the model suffices for the correct expression of a classifier, then we would

expect syntactic modesty to be an accurate estimator of a revision’s defensibility. This

finding leads us to argue that the models used in this example contain an important subset

of the relevant features defining respiratory syndrome. The poor performance of semantic

modesty supports this argument in that the use of a larger set of familiar (i.e., modest) terms

significantly reduced the efficacy of the measure.

Following syntactic modesty, semantic conservatism is the strongest indicator of defensi-

bility. Due to the relationship between this measure and Pazzani’s monotonicity constraints

[44], our finding builds on that work. Whereas Pazzani evaluated these constraints with

regards to the predictive accuracy of the generated rule sets, we focused our attention on the

acceptability of such rules. We found that conservative rules need not always be defensible

and that room exists for improving upon this measure. Combining monotonicity constraints

with a strict language bias, as we introduced in syntactic modesty, seems most promising of

the options we considered.

The two semantic measures of defensibility along with the syntactic measure of simplicity

round out the remaining, weakly correlated estimators of defensibility. Although the com-

bined semantic measures both performed better than the combined syntactic measure, their

correlations were low. We believe that a poor choice for both modesty and simplicity mea-

sures was the primary cause. That is, a measure of modesty must more effectively constrain

the language of the model than our semantic measure did, and the measure of simplicity

should presumably focus more on cost efficiency, as in [65], than the difficulty of observation.

Finally, we note that syntactic simplicity, which often appears as a preference during model

building, seems inadequate as a measure of revision acceptability.
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5.6 SUMMARY

In this chapter we built an understanding of defensibility from both a syntactic and semantic

viewpoint. Our skeleton consisted of the virtues of hypotheses described by Quine and Ullian

in The Web of Belief. After implementing the measures of defensibility and incorporating

them into Kalpana, we tested them on data from the medical domain. Results showed that,

to a slight degree, semantic measures of defensibility outperform straightforward versions of

syntactic measures, although we were surprised to find that syntactic modesty correlated

so highly with the gold standard. Given that a little knowledge garnered from a two hour

session with a domain expert led to an increase in our ability to quantify defensibility, we

conjecture that more and finer-grained knowledge will lead to more accurate measures. In

particular, identifying a small set of well-entrenched attributes appears most promising.
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6.0 CONCLUSION

Two fundamental themes converged within this exploratory work: anomaly-driven theory

revision and the identification of acceptable revisions. Anomaly-driven revision involves the

use of an incorrectly predicted example to select appropriate data and knowledge to generate

and select a repair to an original model. We found that experts do not consider all revisions

equal and that their judgment of the revisions can help increase the predictive accuracy of the

model. This finding led us to search for a means of efficiently capturing the relevant domain

knowledge of the expert to identify the set of acceptable anomaly resolutions. We were, to

some extent, successful, and our work makes several contributions, with a few caveats, while

suggesting interesting next steps.

6.1 CONTRIBUTIONS

A major contribution of this work is the identification of a method for performing anomaly-

driven theory revision within the rule-based classification framework. That is, given an

anomaly, we create four subsets of data each for the identification of both differences and

similarities. We then either compare the data within each subset (in the method of agree-

ment) or compare the anomaly to each subset (in the method of difference). Since each

subset of data relates to the anomaly in a meaningful way, we can gain insight into why a

particular case is anomalous, which pushes our revisions away from mere description and

closer to the realm of explanation. We can move the revisions even further in the direction

of explanation by assuring that they are acceptable to domain experts.
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Providing operational definitions of the concepts of acceptability and defensibility is

another main contribution of the current work. Acceptability consists of three criteria.

The first, rehabilitation, is a definitional feature of any anomaly resolution. The second,

monotonicity, plays a precautionary role, hopefully keeping a single example from causing a

reduction in the future predictive accuracy of the model. The third, defensibility, requires the

revision to be justifiable within the context of extended domain knowledge (i.e., knowledge

relevant to, but not contained within the model). Using suggestions from Quine and Ullian

[47], we explored the nature of defensibility, separating it into three components that guided

both the development of measures and the acquisition of knowledge: conservatism, modesty,

and simplicity.

We were not the first to consider some manner of acceptability as a core component of

the rules within a model. In particular, monotonicity constraints [44] and the CLARUS sys-

tem [7] capture versions of both conservatism and modesty, whereas many systems employ

a measure of simplicity similar to the syntactic measure used in our system, Kalpana. The

differences between our semantic measure of conservatism and monotonicity constraints are

negligible, but the measures of efficacy differ. That is, while Pazzani showed that mono-

tonicity constraints improve the predictive accuracy of a model, we examined their ability to

capture defensibility. To this end, we found a positive correlation between semantic conser-

vatism and an expert’s judgment. These results fit well together, yielding stronger support

for this relatively simple method of incorporating domain knowledge into the revision pro-

cess. With respect to the relationship between CLARUS and our modesty measures, we also

see mutual support. The main result is that establishing a preferred subset of features with

which to discuss class membership assists in the identification of acceptable revisions. Or,

less formally and much more generally, having an expert specify his or her preferences makes

it easier to match those preferences.

In addition to the above results, we made minor discoveries regarding productive subsets

of data for model revision. First, we found that when using the method of difference, the

most fruitful subset of data for resolving the anomaly corresponds to the subset used in

traditional decision-tree and rule-learning systems. To our knowledge this study yields the

first explicit, empirical justification for preferring that particular subset. Second, we found
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that comparing anomalies of the same class that are misclassified by the same rule leads to

a high proportion of acceptable anomaly resolutions. Our approach, based on Mill’s method

of agreement, serves as a suitable basis for any program that processes multiple anomalies

at once. Third, we found that applying acceptable revisions results in fewer new anomalies

in unseen data, versus arbitrary selection, and this directly translates to improved predictive

accuracy.

6.2 LIMITATIONS

Though this work makes several contributions, we note that it also possesses a number of

limitations. In particular, the study itself was one of exploration. So, we concerned ourselves

mostly with defining a new method of model revision and testing it on a limited set of data.

As a result, our findings should be interpreted as guidelines for future research as opposed to

a finished product. Apart from the relatively limited evaluation, testing within the medical

domain carries its own caveats.

We note that the data used for this study came from a domain full of conflict. Although

the three physicians that produced our table of attribute values often agreed, this was not

always the case. Even though they examined the same medical reports, they brought their

own training and skills into the data extraction process. In fact, disagreement among medi-

cal experts is both normal and expected. Selecting the majority opinion should control for

some of the disagreement, but there are no guarantees. Additionally, the concept of respira-

tory syndrome is somewhat abstract, so errors in class labeling should also be expected—a

condition that is exacerbated by having only one physician’s opinion on the class.

Finally, by converting our attributes into Boolean form, we traded information for a sim-

plified model space. In particular, the difference between a missing attribute and the same

attribute specifically noted as absent can be significant. For example, knowing that a pa-

tient’s x-ray was negative for pneumonia gives strong evidence against pneumonia. However,

if that patient never had a chest radiograph, then we must retain our uncertainty. Interest-
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ingly, knowing that a particular attribute is missing sometimes carries information of its own,

indicating that the attending physician may have deemed the measurement unnecessary.

Regardless of these limitations, we believe that our results are strong enough to support

future research. Most of the problems mentioned above are inherent to work within the

medical domain and are not rare or specific to this specific study. Applying our methods to

other domains should help overcome these problems while determining the generality of the

approach.

6.3 FUTURE WORK

While expanding into other domains is a reasonable future step for our research, other

extensions also present themselves. For instance, anomaly resolutions possess more than

mere descriptive power. To a certain extent they explain the anomaly since they isolate

those conditions present only within the anomaly. We hope to determine how to exploit this

extra information to extend beyond flat exception rules into the realm of deep explanations.

We also hope to explore anomaly-driven revision in the context of different formalisms such

as those used for equation discovery [34, 35, 58, 59]. Finally, we intend to investigate cases

where revisions actually explain away anomalies, allowing us to ignore those data with respect

to a specific model.

We began with a claim that anomalies drive scientific discovery. To address this claim,

we developed methods for analyzing anomalies within a concept learning framework. By

centering our work around the anomaly we create new possibilities for the development of

discovery algorithms. In particular, we emphasize a revision’s justifiability and what it claims

about an anomaly as opposed to its complexity or its effect upon the original, flawed model.

We end by saying that we have only scratched the surface of anomaly-driven techniques and

the identification of acceptable revisions.
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APPENDIX A

REVISIONS FROM CHAPTER 2

The following twelve revisions were generated for the example in Chapter 2. The comments

were provided by our domain expert, Dr. John Dowling, and have been subjected to minor

editing to preserve consistency and clarity.

Anomalies Resolved : (6 7 229 87)
Original Rule:
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(DYSPNEA is PRESENT) and
(OXYGEN DESATURATION is ABSENT) and
(X RAY PNEUMONIA is ABSENT) and
(X RAY HYPERINFLATED LUNGS is ABSENT) and
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Agreement: Compared to anomalies of the same observed class
Semantic Defensibility: -0.5
Syntactic Defensibility: 0.38333338
Domain Expert’s Comment : Not acceptable. All those negative attributes don’t rule out respira-
tory syndrome (RS) when cough and dyspnea are present. In particular, x-ray pneumonia could
be absent, yet there is a lesion or foreign body within the tracheobronchial tree.

Anomalies Resolved : (6 7 229 87)
Original Rule:
(SPUTUM is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
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Exception Rule:
(WHEEZING is ABSENT) and
(X RAY PLEURAL EFFUSION is ABSENT) and
(X RAY PNEUMONIA is ABSENT) and
(X RAY HYPERINFLATED LUNGS is ABSENT) and
(SPUTUM is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Agreement: Compared to anomalies of the same observed class
Semantic Defensibility: -2
Syntactic Defensibility: 0.4666667
Domain Expert’s Comment : Not acceptable. Similar reasoning. All those negative attributes don’t
rule out RS when sputum is present. In particular, x-ray pneumonia could be absent, yet there is
sputum coming from the tracheobronchial tree, as in bronchitis. [Editorial note: Chronic bronchitis
was not classified as an RS.]

Anomalies Resolved : (87 229)
Original Rule:
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(TACHYCARDIA is PRESENT) and
(OXYGEN DESATURATION is ABSENT) and
(X RAY PNEUMONIA is ABSENT) and
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Agreement: Compared to anomalies misclassified by the same
rule of the same class
Semantic Defensibility: 0.5
Syntactic Defensibility: 0.48133898
Domain Expert’s Comment : Not acceptable. Cough is indicative of some sort of RS with 99% as-
surity. Tachycardia is non-specific and can just mean that the patient is sick rather than indicating
a cardiac cause.

Anomalies Resolved : (229)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(X RAY PNEUMONIA is ABSENT) and
(PLEURITIC PAIN is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to data of the predicted class matching
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the incorrect classifier
Semantic Defensibility: 0.5
Syntactic Defensibility: 0.5357023
Domain Expert’s Comment : Not acceptable. Pleuritic pain adds to the likelihood that RS is present.

Anomalies Resolved : (229)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule: (CHILLS is PRESENT) and
(ASTHMA is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to all data
Semantic Defensibility: -1.0
Syntactic Defensibility: 0.5023689
Domain Expert’s Comment : Not acceptable. Chills doesn’t detract from the likelihood that RS is
present. (I believe we are not calling asthma an RS [that we are interested in]). [Editorial note: See
Dr. Dowling’s comment on the next case for an explanation of why asthma, which is not considered
an RS and which could explain dyspnea, is not sufficient for ruling out respiratory syndrome.]

Anomalies Resolved : (229)
Original Rule:
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(CHILLS is PRESENT) and
(ASTHMA is PRESENT) and
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to all data
Semantic Defensibility: -1.0
Syntactic Defensibility: 0.5023689
Domain Expert’s Comment : Not acceptable. Asthma per se shouldn’t give chills (i.e., fever). So,
there is likely some RS complicating the asthma (e.g., pneumonia).

Anomalies Resolved : (87)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
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(FEVER is PRESENT) and
(BRONCHITIS is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to all data
Semantic Defensibility: -1.5
Syntactic Defensibility: 0.5023689
Domain Expert’s Comment : Not acceptable. Bronchitis and fever strengthen the likelihood of RS.

Anomalies Resolved : (87)
Original Rule:
(SPUTUM is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(FEVER is PRESENT) and
(BRONCHITIS is PRESENT) and
(SPUTUM is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to all data
Semantic Defensibility: -1.5
Syntactic Defensibility: 0.5023689
Domain Expert’s Comment : Not acceptable. Bronchitis and fever strengthen likelihood of RS.

Anomalies Resolved : (87)
Original Rule:
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(FEVER is PRESENT) and
(BRONCHITIS is PRESENT) and
(COUGH is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to all data
Semantic Defensibility: -1.5
Syntactic Defensibility: 0.5023689
Domain Expert’s Comment : Not acceptable. Fever and bronchitis strengthen the likelihood of RS.

Anomalies Resolved : (7)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
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Exception Rule:
(ACUTE CORONARY SYNDROME is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to data of the originally assigned class
Semantic Defensibility: 1.5
Syntactic Defensibility: 0.6
Domain Expert’s Comment : Acceptable. Acute coronary syndrome explains dyspnea in the ab-
sence of RS.

Anomalies Resolved : (7)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(CHEST TENDERNESS is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to data of the originally assigned class
Semantic Defensibility: 1
Syntactic Defensibility: 0.6
Domain Expert’s Comment : Acceptable. Musculoskeletal chest injury explains dyspnea.

Anomalies Resolved : (6)
Original Rule:
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is PRESENT)
Exception Rule:
(ACUTE CORONARY SYNDROME is PRESENT) and
(DYSPNEA is PRESENT)
implies (RESPIRATORY SYNDROME is ABSENT)
Method of Generation: Method of Difference: Compared to data of the originally assigned class
Semantic Defensibility: 1.5
Syntactic Defensibility: 0.6
Domain Expert’s Comment : Acceptable. Acute coronary syndrome explains dyspnea.
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APPENDIX B

PSEUDOCODE

B.1 METHOD OF AGREEMENT

Method-of-Agreement(anomalies, data):
// remove the anomalies from the rest of the data
nonanomalies = data - anomalies
// collect all features shared by the group of anomalies
pool = shared-features(anomalies)
// initialize a list of revisions
revisions = [ ]
// separately consider each anomaly
for each a in anomalies
// consider each rule that incorrectly classifies the anomaly
for each i in (incorrect-classifiers(a))
// create the root revision from the antecedent of the
// incorrect classifier and the correct classification of
// the anomaly
r = create-root(antecedent(i), class(a))
// add all the features that keep the new revision from
// creating any new anomalies
push(necessary-features(r, pool, nonanomalies),

antecedent(r))
// while the new revision continues to create new anomalies
// and there are features that the program can use to
// specialize the revision
while (overly-general(r, nonanomalies) and

features-left(pool, r))
// add an unused feature that best separates the anomaly from
// nonanomalous data incorrectly classified by the current
// revision
push(best-separator(r, pool - antecedent(r), nonanomalies),
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antecedent(r))
// push the resulting revision onto the list
push(r, revisions)

return revisions

B.2 METHOD OF DIFFERENCE: BASIC

Method-of-Difference-Basic(anomalies, data):
// begin with an empty set of revisions
revisions = [ ]
// remove the anomalies from the rest of the data
nonanomalies = data - anomalies
// individually consider each anomaly
for all a in anomalies
// consider each feature expressed in the anomaly that is
// not expressed in any of the nonanomalous data
for all s in separators(feature-set(a), nonanomalies)
// consider each rule that incorrectly classifies the
// anomaly
for all i in incorrect-classifiers(a)
// create the root revision from the antecedent of the
// incorrect classifier and the correct classification of
// the anomaly
r = create-root(antecedent(i), class(a))
// add the separating feature to the antecedent of the
// root revision
push(s, antecedent(r))
// when the root revision meets the monotonicity
// criterion, add it to the collection of revisions
unless(overly-general(r, nonanomalies))
push(r, revisions)

return revisions

B.3 METHOD OF DIFFERENCE: DECISION BRANCH

Method-of-Difference-Decision-Branch(anomalies, data):
// begin with an empty set of revisions
revisions = [ ]
// remove the anomalies from the rest of the data
nonanomalies = data - anomalies
// individually consider each anomaly
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for all a in anomalies
// consider each rule that incorrectly classifies the anomaly
for all i in incorrect-classifiers(a)
// create the root revision from the antecedent of the
// incorrect classifier and the correct classification of
// the anomaly
r = create-root(antecedent(i), class(a))
// while the revision fails to meet the monotonicity
// criterion and while the features matching the observed
// values in the anomaly have not all been used in the
// antecedent of the revision
while(overly-general(r, nonanomalies) and

(feature-set(a) - features(antecedent(r)) > 0)
// find the one feature that separates the anomaly from the
// greatest number of nonanomalous data in the current
// subset
// add that feature to the antecedent of the revision
push(best-separator(r, feature-set(a) - antecedent(r),

nonanomalies),
antecedent(r))

// if the revision meets the monotonicity criterion, keep it
unless(overly-general(r, nonanomalies))
push(r, revisions)

return revisions

B.4 NONTRIVIAL SUBPROCEDURES

shared-features(anomalies):
// select an arbitrary anomaly
a = first(anomalies)
// create a list of the features that match the anomaly
shared-feature-list = [ ]
for each f in feature-list
when matches(f, a)
push(f, shared-feature-list)

// walk through the collection of anomalies, matching
// each feature to each anomaly
for each a in anomalies
for each f in shared-feature-list
// when the selected feature does not match an
// anomaly (and therefore is not shared among the
// set), remove it from the list of shared features
when not(matches(f,a))
remove(f, shared-feature-list)
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return shared-feature-list

necessary-features(root, pool, nonanomalies):
// initialize the necessary features to an empty list
necessary-feature-list = [ ]
// visit each feature in the pool of features
for each f in pool
// create a new revision from the root revision, adding
// all features except the one currently selected to the
// antecedent of the root
// note that new-rule takes a collection of features that
// it assembles into a conjunctive antecedent and a single
// feature that becomes the consequent
new-revision = new-rule(antecedent(root) + pool - f,

consequent(root))
// match the new revision against all the nonanomalous data
// if a nonanomaly matches the antecedent of the rule, then
// the feature that was left out is considered necessary for
// avoiding the misclassification of the nonanomaly
for d in nonanomalies
if (match(new-revision, d))
push(f, necessary-feature-list)
break to ’for each f in pool’

return necessary-feature-list

best-separator(revision, features, nonanomalies):
// keep track of the feature that best separates
// the anomaly classified by the current revision
// from all the nonanomalies
least-number-matched = infinity
best-separator
// examine each feature not already used within the
// antecedent of the revision
for f in features - antecedent(revision)
// create a new rule from the antecedent of the revision,
// the current feature, and the consequent of the revision
new-revision = new-rule(antecedent(revision) + f,

consequent(revision))
// count how many nonanomalies match the new revision
number-matched = count-matches(new-revision, nonanomalies)
if (number-matched < least-number-matched)
best-separator = f
least-number-matched = number-matched

return best-separator
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separators(features, nonanomalies):
// keep track of all the features that do not match any
// of the observed values in the nonanomalies
separator-list = [ ]
// match each feature to every nonanomaly
for f in features
is-separator = true
for d in nonanomalies
// if the feature matches a nonanomaly, move on to the
// next feature, otherwise add it to the list of separators
if (match-feature(f, d))
is-separator = false
break;

if (is-separator)
push(f, separator-list)

return separator-list
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APPENDIX C

INSTRUCTIONS FOR THE DOMAIN EXPERT

There are 158 items consisting of an original rule that misclassified one or more cases and

an exception rule that should explain (away) the misclassification. The exception rule will

include all the features (e.g., rhonchi are present) contained within the original rule in

addition to new features. Those new features are supposed to carry the explanatory power

in the context of the features from the original rule.

I would like you to judge whether the exception rules are plausible based on the new

features alone. That is, can the new features in the exception rule justify a change in the

target class? As an example of how to interpret the raw presentation of the rules, the original

rule in the first rule pair states, “IF rhonchi are present, THEN the patient has respiratory

syndrome.” Some cases were found that contradict that rule, leading to the creation of the

exception rule, “EVEN IF rhonchi are present, when fever is absent and there is no x-ray

result that is positive for pneumonia, THEN the patient does not have respiratory syndrome.”

Once you have judged the plausibility of the rule, please indicate whether the judgment

was difficult to make. In this data, acute and chronic were grouped as RS is present. If you

would like further clarification, please ask.
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APPENDIX D

DOMAIN KNOWLEDGE IN KALPANA

D.1 THE CONSERVATISM OF ATTRIBUTES

The following attributes, when present, are associated with the presence of respiratory syn-

drome.

Signs and Symptoms: congestion, cough, dyspnea, hemoptysis, pleuritic pain, sputum,

chills, history of pneumonia

Physical Findings: breath sounds decreased, cyanosis, dullness, fever, oxygen desatura-

tion, wheezing, stridor, tachypnea, rales/crackling, rhonchi

Chest Radiograph Findings: pulmonary edema, pneumothorax, widened mediastinum,

pneumonia

Diagnoses: asthma, chronic obstructive pulmonary disease, cystic fibrosis, empyema, in-

fluenza, pneumonia, HIV/AIDS

The following attributes, when present, are associated with the absence of respiratory syn-

drome.

Signs and Symptoms: chest pain, conjunctivitis, stomatitis, upper abdominal pain, head-

ache, flu symptoms, sweats

Physical Findings: abdominal distension, cervical adenopathy, chest tenderness, pleural

rub, subcutaneous edema chest/neck, tachycardia
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Chest Radiograph Findings: atelectasis, hyperinflated lungs, mass, mediastinal shift,

pericardial effusion, pleural effusion, poor inspiration

Diagnoses: acute coronary syndrome, anxiety, aortic dissection, cardiomyopathy, chest

trauma, hiatal hernia, pharyngitis, pneumothorax, pulmonary edema CHF, pulmonary

embolus, sarcoidosis, sepsis, viral syndrome, lung tumor

D.2 THE MODESTY OF ATTRIBUTES

The following attributes were considered more valuable than the rest when identifying a case

of respiratory syndrome.

Signs and Symptoms: congestion, cough, dyspnea, hemoptysis, pleuritic pain, sputum,

chills, pneumonia history

Physical Findings: breath sounds decreased, cyanosis, dullness, fever, oxygen desatura-

tion, wheezing, rhonchi, stridor, tachypnea, rales/crackling, chest tenderness, pleural rub

Chest Radiograph Findings: pneumonia, mass, pulmonary edema, pneumothorax,

Diagnoses: acute coronary syndrome, anxiety, aortic dissection, cardiomyopathy, chest

trauma, hiatal hernia, pharyngitis, pneumothorax, chronic obstructive pulmonary dis-

ease, cystic fibrosis, empyema, HIV/AIDS, influenza, lung tumor, musculoskeletal chest

pain, pneumonia, asthma, pulmonary edema CHF, pulmonary embolus, sepsis, viral syn-

drome

D.3 THE SIMPLICITY OF ATTRIBUTES

The domain expert considered the following attributes to be relatively easy to observe.

Signs and Symptoms: congestion, cough, dyspnea, hemoptysis, pleuritic pain, sputum,

chills, history of pneumonia, chest pain, conjunctivitis, stomatitis, upper abdominal pain,

headache, flu symptoms, sweats
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Physical Findings: stridor, tachypnea, cyanosis, abdominal distension, tachycardia, fever

Diagnoses: acute coronary syndrome, chest trauma, pharyngitis, sarcoidosis, viral syn-

drome, asthma, chronic obstructive pulmonary disease, HIV/AIDS

The domain expert considered the following attributes to be moderately difficult to observe.

Physical Findings: breath sounds decreased, dullness, wheezing, rhonchi, rales/crackling,

oxygen desaturation, cervical adenopathy, chest tenderness, pleural rub, subcutaneous

edema chest neck

Chest Radiograph Findings: pneumonia, pulmonary edema, widened mediastinum, at-

electasis, mass, poor inspiration, pneumothorax, hyperinflated lungs, mediastinal shift,

pericardial effusion, pleural effusion

Diagnoses: anxiety, hiatal hernia, pneumothorax, pulmonary edema CHF, sepsis, empyema,

influenza, lung tumor, musculoskeletal chest pain, pneumonia

The domain expert considered the following attributes to be relatively difficult to observe.

Diagnoses: aortic dissection, cardiomyopathy, pulmonary embolus
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