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The diversity of research on visual attention and multiple-
object tracking presents challenges for anyone hoping to
develop a unified account. One key challenge is
identifying the attentional limitations that give rise to
competition among targets during tracking. To address
this challenge, we present a computational model of
object tracking that relies on two attentional mechanisms:
serial selection and parallel enhancement. Selection picks
out an object for further processing, whereas
enhancement increases sensitivity to stimuli in regions
where objects have been selected previously. In this
model, multiple target locations can be tracked in parallel
via enhancement, whereas a single target can be selected
so that additional information beyond its location can be
processed. In simulations of two psychological
experiments, we demonstrate that spatial competition
during enhancement and temporal competition for
selection can explain a range of findings on multiple-
object tracking, and we argue that the interaction
between selection and enhancement captured in the
model is critical to understanding attention more broadly.

Introduction

Attention lies at the heart of human visual process-
ing. Our ability to selectively attend to relevant objects
helps us make sense of the complex world around us.
Thus, considerable effort has gone toward exploring
how attention operates, when it succeeds, and when it
fails. Multiple-object tracking (MOT) is a task that has
proven useful for exploring attention to dynamic
scenes. In this task, participants must track a set of
moving objects, called targets, while distinguishing
them from identical-looking distractors (Pylyshyn &
Storm, 1988). Although MOT was not originally
designed to study attention, there is ample evidence
that it requires attention (e.g., Kunar, Carter, Cohen, &

Horowitz, 2008; Tombu & Seiffert, 2008; for a review,
see Meyerhoff, Papenmeier, & Huff, 2017), and the
task has been used to study how attention is redeployed
to address challenging situations (Holcombe & Chen,
2012; Meyerhoff, Papenmeier, Jahn, & Huff, 2016;
Srivastava & Vul, 2016).

Despite MOT’s popularity, there is widespread
disagreement on how to interpret the results from
object-tracking research (Alvarez & Franconeri, 2007;
Franconeri, Jonathan, & Scimeca, 2010; Holcombe &
Chen, 2013), much of it stemming from a lack of clarity
about what visual attention is. For example, consider
two key findings: Tracking performance suffers as the
number of targets increases (Pylyshyn & Storm, 1988),
and although four targets can be tracked effectively,
some information about the targets, such as their motion
histories, is unavailable when more than two targets are
tracked (Luu & Howe, 2015). These findings suggest that
targets compete for attention, such that only a finite
number of targets can be processed fully, but what is the
nature of this competition? To what extent is attention
limited by space in the visual field (Franconeri et al.,
2010), processing time (Holcombe & Chen, 2012),
memory (Horowitz & Cohen, 2009), or other con-
straints? To address these questions, we need to explore
the specific mechanisms that support attentional pro-
cessing, and the conditions under which those mecha-
nisms can provide sufficient information to track targets.

As an aid to developing a concrete theory of
attentional mechanisms, we present the Integrated
Model of Object Tracking (IMOT). IMOT is a
computational model that mimics human tracking
performance, operating autonomously on videos that
match those shown to human participants. The model
relies on two tracking mechanisms, one that can track
multiple targets in parallel but is constrained by target
spacing and another that serially picks out individual
targets to compute further information, and thus is
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constrained by timing. This distinction is motivated by
decades of research suggesting that at least two
mechanisms support visual attention: enhancement and
selection. Enhancement increases sensitivity to stimuli
at one or more locations while decreasing sensitivity in
the area surrounding each location (Egly, Driver, &
Rafal, 1994; Eriksen & St. James, 1986; Posner, 1980;
Tsotsos, 1990), whereas selection singles out an element
for further processing (Rensink, 2000; Treisman &
Gelade, 1980; Wolfe, 2007).

IMOT applies enhancement to mark each target’s
location, and these marks are updated in parallel to
follow moving targets. Although this mechanism often
is sufficient for tracking, sometimes location is not
enough for distinguishing targets from distractors. For
example, in a two-dimensional tracking task, it may be
possible for a target to overlap a distractor in space,
such that their locations briefly appear identical. To
address this challenge, an individual target can be
selected and its motion history computed before it
overlaps a distractor. The motion history can be used
to predict where the target will emerge after the overlap
event ends, so that the target continues to be tracked
successfully. However, because only one target can be
selected at a time, participants will be less effective at
processing motion histories as the number of targets
competing for selection increases (Luu & Howe, 2015).

In the following sections, we demonstrate IMOT’s
ability to explain existing findings and generate novel,
testable predictions about when targets will compete
for attention. We begin by summarizing a range of
MOT findings and proposing that most findings can be
explained by enhancement, which is constrained
spatially, and selection, which is constrained tempo-
rally. Next we describe IMOT, demonstrating that it is
well grounded in visual-perception and attention
research. We evaluate the model by simulating two
behavioral experiments, one involving competition for
space and the other involving competition for pro-
cessing time. We stress that no existing model or theory
provides a compelling explanation for the results across
the two experiments. We close by discussing how
IMOT could be expanded to explain a broader range of
results and by considering the model’s predictions.
Notable, because enhancement and selection are
general attentional mechanisms, these predictions go
beyond MOT in isolation, and include the ways that
object tracking and other attentionally demanding
tasks should interact in complex, dual-task scenarios.

Background

From its beginning, research on MOT has both
followed and informed theories of visual attention. The

initial MOT research addressed an apparent paradox
where theories positing that people can attend to one
location at a time (Eriksen & St. James, 1986; Posner,
1980) conflicted with the capacity to reference multiple
locations when evaluating a spatial relationship be-
tween two objects (e.g., above) and when reasoning
about large-scale patterns. To account for this ability,
Pylyshyn (1989) suggested that people use visual
indices, pointers from representations in their minds to
object locations in their visual fields. These visual
indices are considered preattentive in the sense that
they follow moving objects without requiring attention.
In early investigations of MOT, Pylyshyn and Storm
(1988) demonstrated that people can track five moving
objects accurately. Using a mathematical model, they
argued that it would be impossible to track that many
targets by serially attending to each one.

In contrast with earlier findings, later research
demonstrated that people can attend to multiple,
distinct locations in parallel (Awh & Pashler, 2000;
McMains & Somers, 2004). For example, Kramer and
Hahn (1995) cued participants to expect letters at two
locations and found that participants could compare
the letters without being distracted by task-irrelevant
letters positioned between the cued locations. Given
this evidence, Cavanagh and Alvarez (2005) suggested
that MOT relies on multifocal attention: People attend
to and track multiple objects in parallel. If this is the
case, then MOT should provide important information
about the limits of multifocal attention. By exploring
the conditions where tracking fails, researchers can
determine when it is or is not possible to attend to
moving objects.

Key findings in MOT

Here we summarize five classes of MOT findings,
each of which helps to elucidate the limits of human
visual attention. Two classes, spatial constraints and
temporal constraints, directly address limits on atten-
tion. The third class, hemifield advantages, indicates
one way of overcoming those limits. The fourth class,
dynamic operation, suggests that the demands on
attention can change over time during tracking. The
final class, sensitivity to motion, demonstrates that
processing complex visual features puts additional
demands on attention beyond those required simply for
tracking targets.

Spatial constraints

Several studies have found that tracking ability
depends on the distance between targets, with perfor-
mance declining when targets are able to move closer to
each other (Carlson, Alvarez, & Cavanagh, 2007;
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Holcombe, Chen, & Howe, 2014; Shim, Alvarez, &
Jiang, 2008; Vater et al., 2017). These findings have
given rise to a spatial interference account, which claims
that neighboring targets interfere with each other
during tracking (Franconeri et al., 2010). Such an
account is consistent with the well-studied phenomenon
of crowding, in which visual processing of a stimulus is
impeded by the presence of nearby stimuli (Whitney &
Levi, 2011), and indeed spatial interference appears to
follow Bouma’s law, which states that crowding occurs
when the distance between stimuli is less than half the
distance from a stimulus to the gaze fixation (Hol-
combe et al., 2014). Potentially, a target could be
crowded either by nearby targets or by nearby
distractors. However, several theories of attention posit
that attending to a location results in enhanced
sensitivity to stimuli at that location and suppressed
sensitivity to stimuli in the surrounding area (Desimone
& Duncan, 1995; Reynolds & Heeger, 2009; Tsotsos,
1990), and research has indicated that attending to a
target makes it resistant to being crowded by its
neighbors (Dakin, Bex, Cass, & Watt, 2009; Sundberg,
Mitchell, & Reynolds, 2009; Yeshurun & Rashal,
2010). Therefore, it seems likely that targets strongly
suppress processing of their neighbors, whereas dis-
tractors do so weakly.

Researchers have examined enhancement and sup-
pression by measuring whether participants notice task-
irrelevant probes (e.g., flashes of light) occurring on
MOT targets, distractors, or the background (Doran &
Hoffman, 2010; Drew, McCollough, Horowitz, &
Vogel, 2009; Pylyshyn, 2006). In these studies, both
behavioral and neural measures show greater sensitivity
to probes on targets than to probes on distractors,
which suggests that targets are enhanced, distractors
are suppressed, or both effects occur simultaneously.
Notably, it can be difficult to distinguish between
enhancement and suppression without a clear baseline.

Temporal constraints

There is a well-established decline in tracking
performance as object speed increases (Alvarez &
Franconeri, 2007; Shim et al., 2008). However, in many
studies the cause of this decline is unclear: It might
result from fast-moving targets being harder to track or
from fast-moving targets having more opportunities to
crowd each other (Franconeri, Lin, Pylyshyn, Fisher, &
Enns, 2008). Therefore, researchers have studied timing
effects by employing circling stimuli, in which timing
can be varied while spacing is held constant (Holcombe
& Chen, 2012). In a typical display, each target travels
around a circular trajectory, while one or more
distractors follow each target along its circle. When
these stimuli are used, it becomes easy to manipulate
several key factors independently: motion speed, the

distance between targets, the distance between a target
and the distractors following it along the same
trajectory, and the eccentricity of each target.

Using circling stimuli that were placed far enough
apart to prevent crowding, Holcombe and Chen (2012)
demonstrated that there was a speed limit of about 2
rotations/s for tracking a target, and that this speed
limit remained constant regardless of the radius of the
circle trajectory (see also Verstraten, Cavanagh, &
Labianca, 2000). In following work (Holcombe &
Chen, 2013), they found that there was a temporal-
frequency limit of 7 Hz, meaning that the time interval
between when a target occupies a location and when a
distractor following it occupies the same location must
be at least 1/7 s. Critically, as the number of targets
increases beyond one, both the speed and temporal-
frequency limit decrease, indicating that people cannot
track multiple quickly circling targets in parallel.
Holcombe and Chen have suggested that the key
constraint here is processing time: A serial mechanism
is required to track circling targets, and this mechanism
must split its time among the targets.

Hemifield advantages

Interestingly, Holcombe and Chen (2012) found that
two circling targets could be tracked at the same speed
as a single target if the targets were displayed in
separate hemifields. Several other studies have also
found a strong advantage for tracking circling stimuli
that are distributed across the hemifields (Alvarez &
Cavanagh, 2004; Chen, Howe, & Holcombe, 2013;
Shim, Alvarez, Vickery, & Jiang, 2010) or across
quadrants (Carlson et al., 2007). In contrast, hemifield
findings with targets that do not circle have been mixed.
Tracking four targets is easier when two are in each
hemifield than when all four are in the same hemifield,
although the size of the advantage varies across studies
(Alvarez & Cavanagh, 2004; Hudson, Howe, & Little,
2012). On the other hand, when only two targets are
tracked, there is no advantage for distributing them
across hemifields (Shim et al., 2008). The absence of a
hemifield advantage with two targets appears to be
more than just a ceiling effect, as it remains even when
motion speed increases and overall performance
declines.

Dynamic operation

The distribution of attention across targets appears
to vary during tracking (Meyerhoff et al., 2016). This
effect is most obvious when an eye tracker is used to
measure overt attention shifts. Participants fixate on
threatened targets, that is, targets that have moved near
distractors and are at risk of being lost (Vater et al.,
2017; Zelinsky & Todor, 2010). Shifting gaze to a
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threatened target minimizes visual crowding, making it
easier to distinguish the target from its surroundings
(Whitney & Levi, 2011).

In other research, participants are encouraged to
fixate on a central point throughout tracking, so that
only covert shifts of attention are possible. In two such
studies, a target disappeared at the end of the MOT
task and participants were asked to click on its final
location (Iordanescu, Grabowecky, & Suzuki, 2009;
Srivastava & Vul, 2016). Participants showed less
positional error when the target was closer to other
objects, suggesting that they were focusing their
attention on threatened targets. This finding failed to
be replicated in a third study (Howard, Masom, &
Holcombe, 2011), though there may have been
differences in how the data were analyzed.

Combined, the data suggest that threatened targets
draw attention. Participants fixate their gaze on a
threatened target when possible, but they deploy covert
attention to the target even when eye movements are
not possible. However, questions remain about how
attention is able to prioritize threatened targets while
participants continue to track the other targets.

Sensitivity to motion history

Recently, Howe and colleagues (Howe & Holcombe,
2012; Luu & Howe, 2015) found that participants are
better at tracking targets that move in straight lines and
change direction only when bouncing off walls,
compared to targets that randomly change direction
one or two times a second. Importantly, in these studies
objects could move through each other, causing them
to partially or fully overlap. One explanation for the
finding is that when objects move predictably, partic-
ipants can use a target’s motion history to extrapolate
its future position, thereby better distinguishing the
target from an overlapping distractor. In the reported
experiments, the advantage for predictable trajectories
held for two targets but not for four, suggesting that
participants could process motion history only for a
small number of objects.

Explaining MOT findings

Our objective is to develop a computational model
that explains these findings, so that we can make
concrete claims and testable predictions about the
limits of attention. The core tenet underlying our model
is that targets can be tracked through parallel
enhancement combined with serial selection. In the
following sections, we demonstrate how these two
mechanisms can explain three classes of findings:
spatial constraints, dynamic operation, and sensitivity
to motion history. In particular, parallel enhancement
is sufficient for tracking targets based on location, but

it is constrained spatially because neighboring targets
can crowd each other. This mechanism is comple-
mented by serial selection, which can be deployed to a
threatened target to provide access to other features,
such as motion history.

We close the article by considering how our
approach might explain temporal constraints on object
tracking, and by discussing future work that would
allow the model to address the remaining class of
findings, hemifield advantages.

Enhancement and selection

The preceding section suggests that enhancement
and selection are critical to explaining attentional limits
during object tracking. Here we describe these mech-
anisms in general terms, and in the following section we
describe how they support object tracking specifically.

Enhancement increases sensitivity to stimuli at
locations in the visual field. For example, behavioral
studies on space-based attention show that cuing
participants to a particular location increases sensitivity
to stimuli that appear there (Eriksen & St. James, 1986;
Posner, 1980). Similarly, findings on object-based
attention show that sensitivity to stimuli appearing
within the bounds of salient objects is increased (Egly et
al., 1994). Moreover, neuroscientists have found that
both space-based and object-based attention are
characterized by increased neural activity in early visual
cortex that is specific to the attended location
(McMains & Somers, 2004; Roelfsema, Lamme, &
Spekreijse, 1998; Somers, Dale, Seiffert, & Tootell,
1999). Together, these findings suggest that attention is
related to enhanced regions in the visual field, and that
these regions are correlated with increased neural
activity and sensitivity to stimuli.

Contrasting with enhancement, selection refers to
choosing a particular stimulus to receive further
processing. Common paradigms for studying selection
include visual search (Egeth, Virzi, & Garbart, 1984;
Wolfe, 2007), where participants look for objects that
match a particular description, and change blindness
(Rensink, O’Regan, & Clark, 1997; Simons, 2000),
where noticing differences between visual scenes
requires attending to changed elements. Findings
resulting from these paradigms indicate that there is a
processing bottleneck surrounding the binding of
features into a cohesive representation. Specifically,
research supports the view that the features from only
one object can be bound together at a time (Rensink,
2000; Treisman & Gelade, 1980). Accepting the
evidence that selection enables the construction of
object representations, it follows that further mental
operations on those objects rely on that initial, selective
step.
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Although they reflect separate mechanisms, selection
and enhancement work in combination. Specifically,
after individuals select an object as the focus of
attention, they show enhanced sensitivity to its location
in the visual field (Egly et al., 1994; Posner, 1980;
Pylyshyn, 2006). Consequently, objects that appear in
that region in the future are more likely to be selected
than others. Because the mechanisms are so tightly
interwoven, it can be difficult to distinguish one from
the other. However, we believe a key distinguishing
factor is that objects must be selected serially, whereas
multiple regions associated with previously selected
objects can be enhanced in parallel (Kramer & Hahn,
1995; McMains & Somers, 2004).

A theory of enhancement and
selection in MOT

We introduce a theory in which enhancement and
selection play complementary roles in object tracking.
As targets move, a parallel updating mechanism marks
their last-known locations via enhancement. At the
same time, selection of a single target can support
further processing of its features. Critically, each of the
attentional mechanisms provides useful information
about tracked targets, but each is constrained in its own
way. Parallel updating via enhancement provides each
target’s location but is constrained spatially, because
enhancing a target location results in suppressing the
surrounding area. In contrast, serial selection provides
access to other object features, such as a target’s
motion history, but is constrained temporally, because
only one target can be selected at a time.

Because center–surround suppression is central to
our views on object tracking, it is worth noting that
there is disagreement on how this mechanism operates.
Some researchers have argued that enhancing a target
area results in reduced sensitivity to the surrounding
area (Desimone & Duncan, 1995; Reynolds & Heeger,
2009), whereas others have argued that suppressing the

surrounding area results in increased sensitivity to the
target area (Tsotsos, 1990; Tsotsos et al., 1995).
Unfortunately, it is difficult to distinguish these
possibilities behaviorally or even neurally. Because
both possibilities ultimately result in increased sensi-
tivity in the center and reduced sensitivity in the
surround, the present model performs both enhance-
ment and suppression.

Figure 1 provides an example of enhancement and
suppression. In this case, four disks are being tracked.
Their locations are marked by enhanced regions,
depicted in yellow and red, that are surrounded by
suppressed regions, depicted in green. When two
targets move close to each other, the suppressed region
around one overlaps the enhanced region around
another (the upper two targets in Figure 1). This
interference leads to smaller enhanced regions, which
increases the risk that the targets will be lost (Shim et
al., 2008).

Parallel updating provides basic tracking capabili-
ties, but sometimes information beyond target loca-
tions is needed. For example, when a target moves
through an identical-looking distractor, the two briefly
overlap and cannot be distinguished by their locations.
However, the target’s motion history can be used to
predict its future location after the two objects
separate. To facilitate processing motion history, a
target that is threatened by nearby objects and thus in
danger of overlapping them will tend to be selected
(Iordanescu et al., 2009; Srivastava & Vul, 2016;
Zelinsky & Todor, 2010). This strategic selection of
threatened targets becomes less effective as the number
of targets increases, because there is a greater
probability that multiple targets will be threatened at
the same time, and thus a greater risk that a target will
not be selected before it overlaps another object. As a
result, the processing of motion histories will be less
effective when there are more targets (Howe &
Holcombe, 2012; Luu & Howe, 2015).

Example

Figure 2 illustrates multiple events during a MOT
trial. The left column depicts five time slices of the trial.
The selected object at each time is indicated by a blue
square. The right column depicts the enhanced and
suppressed regions used to support parallel updating.
Initially, two disks turn red to indicate that they are
targets (Figure 2a). Each red disk is selected, which
enables feature binding and creates an object repre-
sentation (Treisman & Gelade, 1980) that is stored in
visual short-term memory (VSTM). Each object
representation in VSTM is assigned a visual index
(Pylyshyn & Storm, 1988) that the parallel updating
mechanism uses to track its location. The visual index

Figure 1. Enhanced (red and yellow) and suppressed (green)

regions for four tracked objects.
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marks the target’s last-known location via center–
surround suppression, with an inner, enhanced region
(red and yellow) surrounded by an outer, suppressed
region (green).

After a short interval, the red disks change to gray
disks and all disks begin moving (Figure 2b). As the
trial progresses, the parallel updating mechanism tracks
the two targets without requiring selection (in this
example one of the targets is selected, but selection is
providing no added value). This mechanism addresses
the correspondence problem (Pylyshyn, 2004), the
challenge of determining which disk in the video
corresponds to each target’s visual index. A disk is
matched to an index if two conditions are met: The disk
overlaps the index’s enhanced region, and the disk is
the closest to the enhanced region. The correspondence
problem must be solved at every time step as the objects
move.

At time C (Figure 2c), one target moves near a
distractor. Because this target is threatened by a nearby
object, it is selected, and its motion history is computed
over time. When the selected disk overlaps the
distractor disk, the motion history is used to predict the
selected disk’s location (Figure 2d). To this end, a bias,
shown by the extra red circle with an arrow pointing to
it, is added to the disk’s enhanced region at the
predicted location. This bias enables the correct
identity assignment once the disks no longer overlap.

At the end of the sequence, a disk changes to blue,
which causes the disk to be selected (Figure 2e). The
blue disk’s location is compared to the last-known
locations of the target disks to determine whether it is a
target or a distractor.

The ARCADIA modeling framework

IMOT is implemented in ARCADIA (Bridewell &
Bello, 2016), a computational framework that has been
used to model human thought and behavior across
multiple tasks. ARCADIA was built to explore the
relationships among attention, perception, cognition,
and action. A key claim underlying its development is
that attention biases mental processing such that a
selected element (which may derive directly from an
external stimulus or may be an internal, ‘‘mental’’
representation) receives more processing than other
elements. Specifically, the framework distinguishes
between focus-sensitive processing that occurs only for
a single, selected element and focus-independent
processing that occurs regardless of what is selected.
This distinction is critical for modeling selection and
enhancement in MOT. Focus-sensitive processing
supports integrating a selected object’s features and
computing its motion history, whereas focus-indepen-
dent processing supports parallel enhancement of
multiple target locations.

Mental processing in ARCADIA is simulated by a
set of components that operate in parallel over a
sequence of cycles. These components listen for
broadcast information that they have the ability to
process, apply computational routines to that infor-
mation, and broadcast the resulting information for
components to use in the subsequent cycle. On each
cycle (see Figure 3), components process input and
generate output. One of the outputs is then selected as
the focus, which directs focus-sensitive components to
process it if they are able to do so. The components
may receive input from three sources: the output
produced by all components on the previous cycle, the
output item that was selected as the focus on the
previous cycle, and sensors that retrieve data from the

Figure 2. The selected focus and the enhanced and suppressed

regions at five time slices (a–e).
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environment (e.g., by providing still frames from a
video depicting a MOT trial).

Each ARCADIA model consists of a set of
components and an attentional strategy, which provides
the model’s task-specific attentional priorities. For
example, in a tracking task it may be important to
select tracked objects that are threatened by nearby
distractors. On each cycle of processing, the output
item with the highest attentional priority is selected as
the focus of attention.

The ARCADIA framework is largely unconstrained,
as each component can, in principle, perform any
operation that a function in a computer program might
perform. However, the framework does rely on several
key commitments: Processing is controlled through the
selection of a focus of attention, and only one focus
may be selected at a time; representation and process-
ing are distributed among components; and there is a
short cycle time (typically corresponding to 25 ms of
real time), which bounds the amount of processing in
each component. For instance, as the next section
describes in detail, encoding the representation of a
visual object in VSTM takes three cycles or roughly 75
ms, involves at least four components, and transforms
unstructured perceptual information into a structured
representation that includes nonconceptual content.

In addition to the framework constraints, model
design is undertaken with reference to the literature
from psychology, neuroscience, and philosophy of
mind, including both experimental results and theo-
retical arguments. An underlying objective is to develop
broad mechanisms that operate in the same or similar

ways across models, rather than building isolated, task-
specific models. With that objective in mind, our goal in
this article is to give a mechanistic account of how
general cognitive structures and processes combine to
enable the execution of the object tracking task.

Integrated model of object tracking

IMOT is an implementation of selection and
enhancement during object tracking, built within the
ARCADIA architecture. IMOT’s source code is
available for download.1 Figure 4 illustrates IMOT’s
components and shows how information flows between
them (those components that are sensitive to the focus
of selection are indicated with bold text), and Table 1
presents the model’s attentional strategy. Critically, the
model is meant to capture the flow of information in
the mind during tracking, but not computation at a
neural level. Although we will motivate each compo-
nent, we are not pursuing a direct mapping between
components and brain regions or functions. Addition-
ally, the output generated by components may be
symbolic (e.g., an indication that a target currently is

Figure 3. ARCADIA’s processing cycle.

Figure 4. Flow of information in IMOT. Components in bold are

sensitive to the selected focus.

Priority Type Component Notes

1 Object representation OBJECT-FILE BINDER

2 Proto-object COLOR HIGHLIGHTER Preference for proto-objects that are not already tracked

3 Proto-object MAINTENANCE HIGHLIGHTER This proto-object overlaps another object

4 Proto-object MAINTENANCE HIGHLIGHTER THREAT HIGHLIGHTER indicates that this proto-object is threatened or has the

closest threat

5 Proto-object THREAT HIGHLIGHTER THREAT HIGHLIGHTER indicates that this proto-object has the closest threat

Table 1. IMOT’s attentional strategy.
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threatened by nearby objects), numerical (e.g., the
location and size of an object), or pictorial (e.g., the
color pixel values for an object). See Appendix A for
more information on how output is represented. In the
next section, we present IMOT’s components and show
how they would process the example sequence in Figure
2. Afterward, we describe each component in greater
detail.

Model walkthrough

Suppose IMOT is presented with the video summa-
rized in Figure 2. A sensor captures a still frame from
the video every 25 ms and makes it available to the
components, and one cycle of processing corresponds
to 25 ms of real time. On each cycle, IMAGE SEGMENTER

2

performs figure–ground segregation on the still frame
provided by the sensor, partitioning the frame into
proto-objects: short-lived representations describing
possible regions of interest (Rensink, 2000). For Figure
2a, there are eight proto-objects, corresponding to the
eight disks. Each proto-object encodes a disk’s location
and nonconceptual representations of its basic features,
like size and color (i.e., proto-objects are not catego-
rized as ‘‘red’’ or ‘‘large’’ or ‘‘round,’’ but they do store
the sensory information useful for assigning such
categories).

IMAGE SEGMENTER outputs a collection of proto-
objects in the visual scene, and the individual proto-
objects must be selected before their features can be
processed and stored in memory. To this end, a set of
components called highlighters suggest particular pro-
to-objects as candidates for selection—for example,
COLOR HIGHLIGHTER suggests selecting brightly colored
proto-objects. One proto-object is selected according to
the attentional strategy (Table 1), and then on the
following cycle, OBJECT-FILE BINDER constructs an object
representation to describe what was found at that
proto-object’s location (e.g., a red disk). This descrip-
tion, which includes location and feature information,
is then selected as the focus because the attentional
strategy gives top priority to object representations.

After an object representation is selected, VSTM stores
it in visual short-term memory, which maintains
information about recently selected items. On the cycle
after an object representation is selected and stored in
memory, a new proto-object is selected and the pattern
repeats. Within the context of this model, we can say
that IMOT is focusing on an object when the model
selects the proto-object corresponding to it and then
selects the resulting representation, storing it in
memory. Additionally, we can say that IMOT is
maintaining focus on an object when the model
repeatedly alternates between selecting the proto-object
corresponding to a stored object representation and

selecting the updated representation which refreshes
properties stored in memory (e.g., if a color change has
taken place, the memory of the object will be updated
with the new color).

Although the objects represented in VSTM must be
selected again for their feature information to be
updated, their location information is updated each
cycle by OBJECT LOCATOR, which maintains visual indices
pointing to each object’s last-known location. This
component tracks recently selected objects via three
steps: Mark the last-known locations with enhanced
regions (Figure 2, right column); identify the current
proto-object closest to each enhanced region; and
update each visual index to point to the corresponding,
current proto-object. As a result, other components
always have access to the current location of a
remembered object, in the form of its current proto-
object.

Returning to Figure 2a, COLOR HIGHLIGHTER suggests
the two proto-objects corresponding to the red disks as
candidates for selection. One of these proto-objects is
selected and represented in VSTM, and then the
attentional strategy gives priority to the other red disk
(the one whose location is not already being tracked by
OBJECT LOCATOR), to ensure that both will be selected.
Thus when the red disks change to gray and all disks
begin moving (Figure 2b), both target disks are
tracked.

Most of the time, OBJECT LOCATOR can track moving
targets in parallel based on their last-known locations.
However, when a target draws close to a distractor
(Figure 2c), there is a risk that the two disks will
overlap and their locations will become indistinguish-
able. To address this concern, two components—
THREAT HIGHLIGHTER and MAINTENANCE HIGHLIGHTER—
support selecting a target that is threatened by nearby
objects and computing its motion history so that the
object can be tracked successfully if it overlaps another
object. Like COLOR HIGHLIGHTER, these components
suggest proto-objects as candidates for selection, but
they suggest proto-objects corresponding to currently
tracked targets, and they associate each proto-object
with additional information.

THREAT HIGHLIGHTER computes a threat distance for
each tracked target’s current proto-object, based on the
distance to the nearest other proto-object. This
component suggests every tracked target’s proto-object
as a candidate for selection, and it associates each
proto-object with an indication of whether this target
has the closest threat and an indication of whether this
target is threatened. A target has the closest threat if its
threat distance is the lowest among all targets, and it is
classified as threatened when the threat distance falls
below a threshold which indicates that other objects are
close enough to interfere with successfully tracking that
target.
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MAINTENANCE HIGHLIGHTER computes motion history
for the currently selected proto-object and detects
overlaps with other objects based on sudden size
changes (e.g., as in Figure 2d). This information can be
generated only if IMOT focuses on an object over time.
To facilitate the collection of information about object
motion, this component supports maintaining focus on
an object by suggesting the current proto-object
corresponding to the last-selected object. If MAINTE-

NANCE HIGHLIGHTER detects that the target is currently
overlapping another object, it also provides that
target’s predicted location based on its motion history.

The output from these two highlighters is managed
according to the attentional strategy (Table 1). Initially,
the proto-object corresponding to the target with the
closest threat is selected. Then, MAINTENANCE HIGH-

LIGHTER suggests continuing to select the current proto-
object corresponding to that target. IMOT’s attentional
strategy encodes a strong bias for maintaining focus on
a selected target. More specifically, the proto-object
identified by MAINTENANCE HIGHLIGHTER is preferred
unless both another target has the closest threat and the
current target is neither threatened nor overlapping
another object.

While a selected target overlaps another object,
OBJECT LOCATOR uses the predicted location provided by
MAINTENANCE HIGHLIGHTER, adding enhancement at the
predicted location in the priority map (see the small red
circle indicated by an arrow in Figure 2d). This
additional enhancement ensures that after two over-
lapping objects separate, the correct proto-object will
be matched to the target’s enhanced region so that the
target will continue to be tracked. Notably, this process
requires that the target be selected long enough to
collect its motion history before the objects overlap. If
the target is not selected or is selected too late, then its
motion history will be unavailable, and the model will
be unable to distinguish the two overlapping objects.

At the end of a MOT trial, one of the disks changes
to blue, and IMOT must indicate whether it is one of
the tracked targets (Figure 2e). After the proto-object
for the blue disk is picked out by COLOR HIGHLIGHTER

and selected, TARGET OBJECT GUESSER generates a
‘‘match’’ or ‘‘mismatch’’ signal, based on whether the
blue disk matches the current location of a tracked
target. Optionally, multiple disks may change to blue in
sequence, and this component generates a signal for
each.

Components

With the exception of TARGET OBJECT GUESSER,
IMOT’s components are not specific to object tracking.
These components, which constitute a general front end
to visual processing, support selecting objects, pro-

cessing their features, and storing their representations
in memory. The same or earlier implementations of
these components have been used in ARCADIA
models of other visual tasks, such as enumeration
(Briggs, Bridewell, & Bello, 2017) and change detection
(Bridewell & Bello, 2015). In the remainder of this
section, we stress the role that each component plays in
visual processing, rather than its role in MOT alone.

Image segmenter

Tracking objects requires the basic ability to
distinguish them from the unimportant parts of the
visual field, foregrounding items of interest and
backgrounding the rest. To this end, IMAGE SEGMENTER

takes input from the visual sensor and carries out
figure–ground separation, an important first step in
visual processing that identifies regions that correspond
to possible objects (Palmer & Rock, 1994). These
possible objects have been referred to as proto-objects
(Rensink, 2000), which are volatile representations that
require attention to become stable over time. The
regions of IMAGE SEGMENTER are maximally large,
connected areas that differ in intensity from the
background. The component generates a list of proto-
objects describing each region’s location, size, and color
profile. Because a new set of proto-objects is produced
on each cycle, they are forgotten by the model unless
one is selected as the focus of attention.

Color highlighter

In MOT tasks, there are various ways to draw a
person’s attention to the target objects and to the
queried objects at the end of a trial. Many of these
methods rely on pop-out effects of visual perception,
such as having the target disks blink or coloring them.
In general, the pop-out effect refers to the tendency of
objects that contrast with their surroundings to grab
attention in a manner consistent with fast, parallel
processing (Wolfe & Horowitz, 2004). As implemented
for this model, COLOR HIGHLIGHTER outputs requests to
select proto-objects that are not grayscale. Because the
default color of the disks is gray, the targets are red at
the beginning of each trial, and the queried disks are
blue at the end, this component simulates the pop-out
effect in IMOT.

Threat highlighter

Several MOT studies have found that people attend
to targets as they draw close to other objects
(Iordanescu et al., 2009; Srivastava & Vul, 2016;
Zelinsky & Todor, 2010). This behavior may increase
visual acuity or support the collection of information
about an object’s motion. In IMOT, THREAT HIGH-
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LIGHTER simulates this draw on attention by computing
the threat distance from each target’s proto-object to
the nearest other proto-object, which enables the
selection of the appropriate target according to the
attentional strategy. Specifically, the component gen-
erates a request to focus on the proto-object associated
with each tracked target, accompanied by two pieces of
information: an indication of whether this proto-object
currently has the closest threat, and an indication of
whether this proto-object is classified as threatened.

Classifying targets as threatened influences IMOT’s
behavior because its attentional strategy (Table 1)
indicates that once a selected target becomes threat-
ened, focus must be maintained on it. This classification
is made based on a parameter labeled max-threat-
distance, which is the maximum threat distance at
which a target will be considered threatened. The value
of this parameter controls how quickly the model
switches which target is selected. If the parameter is
small, targets will rarely be considered threatened, and
the model will immediately focus on whichever target
has the closest threat; but if the parameter is large, then
targets will often be considered threatened, and the
model will be highly resistant to changing the focus to a
new target. We discuss this threshold and other free
parameters further at the end of this section.

Maintenance highlighter

Within IMOT, tracking targets that overlap dis-
tractors requires a motion history that lets the model
extrapolate the location of a currently selected object
when there is perceptual uncertainty. Consequently,
MAINTENANCE HIGHLIGHTER has four roles. First, to keep
a target selected long enough to store that information,
MAINTENANCE HIGHLIGHTER generates requests to select
the proto-object corresponding to the current selection
focus. Second, to enable extrapolation, while focus is
maintained on a target the component computes and
stores its motion history.3 Third, to determine when to
provide motion information, MAINTENANCE HIGH-

LIGHTER detects overlap-event onsets and offsets based
on abrupt increases or decreases in the proto-object’s
size.4 And fourth, when a selected target overlaps
another object, this component outputs its predicted
location based on the motion history and a signal
indicating that the overlap is occurring.5 This infor-
mation is used by OBJECT LOCATOR to track the target, as
described later.

Object-file binder

Tracking objects requires the ability to store targets
over time and distinguish them from potential dis-
tractors. Proto-objects are ill suited for that role, since
they are transient encodings and do not survive the

presentation of new information in the visual field.
Instead, IMOT incorporates the concept of object files
from feature-integration theory (Treisman & Gelade,
1980). Object files in the model reflect current evidence
that once objects receive visual attention, they are
encoded into stabilized representations that integrate
the visual features and enable storage in short-term
memory (Lee & Chun, 2001; Luck & Vogel, 1997).
Consequently, when IMOT selects a proto-object
suggested by one of the highlighters, OBJECT-FILE BINDER

generates a representation that consolidates the fea-
tures found at that proto-object’s location. These
features include size information found in the proto-
object itself and information from other components,
such as threat information generated by THREAT HIGH-

LIGHTER.

Visual short-term memory

There are several memory systems that may con-
tribute to object tracking and a variety of potential
theories to explore. On this front, IMOT relies on a
slot-based view of VSTM, where four slots each store a
single, integrated object file (Pylyshyn & Storm, 1988;
Vogel, Woodman, & Luck, 2001; but see Wilken & Ma,
2004). The VSTM component is an active storage system
that monitors which item is selected on each cycle and
stores any object files that become the focus of
attention. If the slots in this component are full, any
new representation will unseat the least recently
encoded object file. This assumption follows from
evidence of a recency effect in VSTM (Kool, Conway,
& Turk-Browne, 2014).

Several studies have suggested that people use the
same mental resources to remember object locations as
they use to track targets (Bettencourt, Michalka, &
Somers, 2011; Drew & Vogel, 2008; Oksama & Hyönä,
2004). In line with this research, VSTM slots in IMOT are
closely associated with visual indices (Pylyshyn, 1989),
which are maintained by OBJECT LOCATOR and used for
tracking (discussed next). This connection is used by
VSTM to determine whether a focused object file
represents an unstored object or an update to an
existing one: If the visual indices for the two object files
point to the same location, then the object files likely
represent the same object.6 When an object file matches
an object already represented in VSTM, the old
representation is updated.

In ARCADIA models, short-term memory compo-
nents operate by outputting their contents on each
cycle. As a result, up-to-date, memorized representa-
tions are available to all components simultaneously. In
IMOT this means that VSTM outputs each of its stored
object files. Additionally, when this component stores
an object file, it issues a signal indicating whether the
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corresponding object is recognized as already in VSTM
or new.

Object locator

The components listed so far enable IMOT to notice,
represent, and remember target objects. However, the
model still needs a way to track moving objects in
parallel. To this end, OBJECT LOCATOR uses a combina-
tion of visual indices and spatial enhancement to
address the motion-correspondence problem (Dawson,
1991). This visual problem is most commonly encoun-
tered in the case of apparent motion and concerns how
the visual system tracks the stable identity of a moving
object over time even when motion is sampled
discretely (e.g., frames of a movie, psychological
experiments on computer screens). In broad strokes,
this component’s approach comprises two steps: Mark
each tracked object’s last-known location with an
enhanced region, and identify the current proto-objects
that best match those regions.

To carry out its function, this component maintains
visual indices pointing to each remembered object’s
last-known location. Following Pylyshyn’s (1989)
view, there is a finite number of visual indices: one
index for each of the four VSTM slots, and an
additional index for newly focused proto-objects that
haven’t yet been represented in VSTM. Whenever a
proto-object is selected as the focus, a visual index is
attached to that proto-object, and it will follow the
corresponding object’s motion until it is assigned to
another proto-object. On each ARCADIA cycle,
IMOT tracks objects by solving the correspondence
problem: identifying the current proto-object that best
matches each visual index. Afterward, the indices are
updated to point to the newly identified proto-object
locations. If no proto-object matches an index, then
that index is abandoned, which in MOT results in
losing track of a target.

Visual indices are matched to proto-objects using a
priority map (Bisley & Goldberg, 2010; Fecteau &
Munoz, 2006),7 which is implemented as a two-
dimensional array that can be overlaid on the visual
input. Each location in the array can store a positive
number, indicating how strongly that location is
enhanced, or a negative number, indicating how
strongly it is suppressed. Visual-index locations are
marked on the priority map via center–surround
suppression, with an enhanced region of positive values
surrounded by a suppressed region of negative values
(see the red and yellow enhanced regions and the green
suppressed regions in Figure 1). If two indices point to
nearby locations, one index’s suppressed region may
overlap another’s enhanced region, resulting in smaller
enhanced-region sizes (the top two regions in Figure 1).

Enhanced and suppressed regions are generated
using the Marr wavelet:

wðtÞ ¼ 2ffiffiffiffiffiffi
3r
p

p1=4
1� t

r

� �2� �
e�

t2

2r2

This function forms a one-dimensional ‘‘Mexican hat’’
shape8 whose positive region extends to 6r. Negative
regions extend outward from these points, asymptoti-
cally approaching 0, but they are near 0 by 63r.

A visual index’s enhanced and suppressed regions
are computed by entering each location’s distance from
the index into the Marr wavelet to determine how much
that location is enhanced or suppressed. The function is
scaled such that the enhanced region’s radius r is the
tracked proto-object’s radius multiplied by 1.5, mean-
ing the enhanced region extends 50% beyond the
object’s radius. In contrast, the function is scaled so
that the suppressed region’s radius increases for objects
in the periphery—we assume here that gaze is centered
in the display, as in many MOT studies.9 The value of r
is scaled such that the distance from r to 3r is half the
proto-object’s distance from the display center. This
scaling approximates Bouma’s law for visual crowding
(Whitney & Levi, 2011), which states that perception of
an object that is x distance from the gaze center will
tend to be disrupted by other objects at a distance of up
to x/2.

Enhanced regions are matched to proto-objects in
three steps. First, a score is assigned to each pairing of
an enhanced region E and a proto-object P:

ScoreEP ¼ RadiusE þ RadiusP
� DistanceðCenterE;CenterPÞ:

This equation sums the radii of the enhanced region
and the proto-object and subtracts the Euclidean
distance between their centers to compute the width of
overlap between them. Nonoverlapping items will
receive a negative score. The equation makes the
simplifying assumption that proto-objects are circular,
which is reasonable for the stimuli discussed in this
article. Second, enhanced regions are matched greedily
to proto-objects, beginning with the highest scoring
pair and enforcing a one-to-one mapping constraint:
An enhanced region can match at most one proto-
object, and vice versa. Only positively scored pairs can
be matched. Third, the one-to-one mapping constraint
is relaxed, and each unmatched enhanced region is
matched to the proto-object with which it has the
highest positive score. This final step lets two visual
indices point to the same location, as when two targets
overlap. On each cycle, OBJECT LOCATOR outputs a list of
the updated visual indices.
Adding a bias: When MAINTENANCE HIGHLIGHTER pro-
vides a predicted location for a target that overlaps
another object, OBJECT LOCATOR adds a bias to that
target’s enhanced region (see the red circle indicated by
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an arrow in Figure 2d). When possible, the enhanced
region is matched to a proto-object that overlaps the
bias, so that when the overlapping disks split apart, the
correct disk will be tracked.

When an enhanced region includes a bias B, the
score for the pairing between that enhanced region E
and each proto-object P is computed as follows:

ScoreEP ¼

RadiusB þ RadiusP � DistanceðCenterB;CenterPÞ;
if this is .0:

RadiusE þ RadiusP � DistanceðCenterE;CenterPÞ;
otherwise:

8>><
>>:

The equation’s top case refers to the width of overlap
between an enhanced region’s bias and a proto-object,
whereas the bottom case refers to the width of overlap
between the overall enhanced region and the proto-
object (as in the simpler equation provided earlier). In
comparing scores for each pairing, priority is given to
pairings with a positive overlap between an enhanced
region’s bias and a proto-object.
Adding noise: OBJECT LOCATOR will stop tracking objects
when they move fast enough so that the enhanced
regions from one cycle fail to overlap the proto-objects
on the following cycle. Until that point, the component
will track perfectly. In contrast, human accuracy
gradually drops as object speeds increase (Shim et al.,
2008). To account for this gradual decrease, we add
noise to the model. On each cycle, a pairing of an
enhanced region E and a proto-object P will be
discarded if either its score is negative or the following
condition is met:

ScoreEP , Gaussian 3 noise-widthþ noise-center:

In this equation, Gaussian returns a random variable
drawn from a standard normal distribution, and noise-
width is a multiplier that increases the width (and
standard deviation) of the noise, whereas noise-center
translates the center of the noise. For example, if noise-
width¼0.1 and noise-center¼0.2, then for each pairing
of E and P, a random variable is drawn from a
Gaussian distribution centered at 0.2 with a standard
deviation of 0.1. If the width of the overlap of E and P
is less than the random variable, then the pairing is
discarded.

Target object guesser

The final component in IMOT is task specific and
enables us to gather data on the model’s tracking
accuracy, so that we can compare it to human data.
TARGET OBJECT GUESSER reports whether the highlighted
object at the end of a MOT trial matches one of the
tracked targets.10 This component uses the signal that
VSTM generates when a new object representation is
added to memory or an old object representation is
updated. If a new object representation with the

highlighting color is added—indicating that the object
is untracked—then this component outputs a mismatch
signal. If an old object representation is updated but
the object’s color has changed to the highlighting color,
then this component outputs a match signal.

Free parameters

The behavior of IMOT’s components depends on
three important parameters that have been described in
the previous sections. The first, THREAT HIGHLIGHTER’s
max-threat-distance, determines how close a threat
must be for a target to be classified as threatened.
Because the model will maintain focus on a threatened
target, a high max-threat-distance makes it more
difficult for the model to flexibly change its focus to
whichever target has the closest threat.

The other parameters, OBJECT LOCATOR’s noise-width
and noise-center, determine how much noise is applied
in evaluating a match between an enhanced region and
a proto-object. As the noise increases, there is a
heightened risk of failing to match an enhanced region
to a proto-object, and thus losing track of a target.

In the simulations that follow, we explore the effects
of varying the three parameters, including examining
what happens when they are set to zero.

Simulation 1

Our first simulation explores spatial competition and
its contribution to dropping, or losing track of targets.
In IMOT, the spatial arrangement of targets is critical
because each target’s location is marked via center–
surround suppression. When one target moves near
another, its suppressive surround overlaps the other’s
enhanced region, resulting in a smaller enhanced
region. Smaller enhanced regions are dangerous be-
cause IMOT’s OBJECT LOCATOR uses the overlap between
the enhanced region from one cycle and the proto-
object on the following cycle. If the two fail to overlap,
the model cannot identify the target’s current location,
and the target is dropped. An additional factor that
contributes to dropping targets is the speed of the
objects. If objects travel a greater distance between
cycles, then there is a higher risk that the enhanced
region and proto-object will not overlap. Thus, targets
will be dropped more frequently either when targets are
closer together or when objects move faster.

If IMOT’s explanation is correct, then the model’s
object-tracking accuracy should match human accura-
cy as speed and target spacing are varied. To test this
conjecture, we simulated a human MOT experiment
originally conducted by Shim et al. (2008, experiment
2) that varied the two factors. In the experiment,
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participants tracked one or two out of 16 moving
objects. The 16 objects were evenly distributed into four
quadrants, and their movement was restricted such that
they could not leave their quadrant (see Figure 5). Shim
et al. reported that tracking accuracy dropped as
motion speed increased and when there were two
targets in the same quadrant.

Experiment description

In the original experiment (Shim et al., 2008), six
participants tracked black disks while maintaining
center fixation. On each trial, one or two disks were
highlighted in red (or green) to indicate that they were
the targets. Afterward, these disks changed back to
black, and the 16 disks began moving. Disks moved in
straight lines, bouncing off the edges of their quad-
rants. They also bounced off each other when they
reached a minimum between-disks distance (1.618
visual angle). After 8 s, the disks stopped moving and a
randomly selected disk from one of the tracked
quadrants was highlighted. Participants pressed a key
to indicate whether the highlighted disk was a target or
a distractor. The probability that the highlighted disk
was a target was always 50%.

On separate trials, there were three tracking condi-
tions: one target (Track-1), two targets in adjacent
quadrants (Track-2-far), and two targets in the same
quadrant (Track-2-near). There were five motion

speeds, ranging from 5.738/s to 11.438/s. Each partic-
ipant saw 240 videos: 4 tracking conditions3 5 motion
speeds 3 16.

Figure 6a depicts the human experimental results.
There were three key findings:

� Accuracy dropped as speed increased.
� Accuracy was higher for the Track-2-far condition
than for the Track-2-near condition, indicating
that it was easier to track two targets when they
were far from each other.
� Accuracy was the same for Track-2-far and Track-
1, indicating that tracking two distant targets was
as easy as tracking a single target.

The researchers conducted additional pairwise com-
parisons to test for the second and third findings at
each motion-speed level. The results held at all speeds
except the slowest, where there was no difference
between conditions. It is likely that there was a ceiling
effect at the slowest speed—that is, tracking was so easy
that participants were equally accurate even when they
were tracking two targets in the same quadrant.

Computational simulation

To evaluate the computational model, we randomly
generated MOT videos similar to those used by Shim et
al. (2008). These videos match the description in the
original article as closely as possible, with three
exceptions that have no bearing on the results:

� There is no fixation cue in the center of the display,
but gaze is always centered in the model.
� To save simulation time, disks are highlighted for a
shorter duration at the beginning and end of each
video.
� We use a common color scheme across this
simulation and Simulation 2, despite differences in
the colors used in the two original experiments.
Disks are highlighted in red at the beginning of a
trial and in blue at the end.

The original display dimensions are specified in
degrees of visual angle, whereas the simulation display
dimensions are in pixels. However, all proportions
from the original display are preserved. We report
speeds in degrees per second rather than pixels per
second.

Videos were generated in batches of 240: 3 tracking
conditions 3 5 motion speeds 3 2 correct responses
(‘‘match,’’ meaning a highlighted disk matches one of
the targets, or ‘‘mismatch’’) 3 8. Each batch corre-
sponds to the videos viewed by one human participant.
To increase statistical power, we ran the simulation on
36 total batches—equivalent to six times the number of

Figure 5. Example of a multiple-object tracking task in which the

disks are restricted to quadrants. The dashed lines show the

boundaries of each quadrant and are not visible to participants.
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participants in the original study—and analyzed by
trial.

Data, code for generating stimulus videos and
analyzing results, and a subset of the stimulus videos
for Simulations 1 and 2 are available for download at
https://osf.io/5m9rh.

Ablation manipulation

For this simulation, we predicted that targets could
be tracked via parallel enhancement, without any need
to select individual targets. We predicted this because
objects never overlapped, and so their locations were
sufficient to distinguish targets from distractors in all
cases. To test this prediction, we ran the simulation
using an ablated version of IMOT, from which THREAT

HIGHLIGHTER and MAINTENANCE HIGHLIGHTER were
removed. In this simplified version, each target was
selected at the beginning of a trial when the targets
changed color, but there was no meaningful target
selection during object tracking.11

Note that after Simulations 1 and 2 were used to
calibrate all of IMOT’s free parameters, we reran
Simulation 1 with the complete model, confirming that
the results did not change when THREAT HIGHLIGHTER

and MAINTENANCE HIGHLIGHTER were included.

Results without noise

We first tested whether noise is necessary to explain
human behavior. To this end, we ran the simulation
with OBJECT LOCATOR’s noise parameters (noise-center,
noise-width) set to zero, meaning that during tracking a
proto-object would always be assigned to the closest
overlapping enhanced region. Unsurprisingly, the
model had near-perfect accuracy, correctly classifying
the highlighted disk as a match or mismatch to the
targets in almost every video (Figure 6b). This result
demonstrates that the model is capable of tracking
targets but does not match human results.

Results with noise

To determine the appropriate noise-parameter val-
ues, we conducted a series of simulation runs across a
set of possible values (see Appendix B). These runs
demonstrated that IMOT replicates human results
across a wide range of moderate noise values. Here, we
report the results with noise-center¼ 0.20 and noise-
width¼ 0.15, a representative instance which mirrors
the human results closely—compare Figure 6a and 6c.

To evaluate the simulation results, we conducted a
two-way analysis of variance (ANOVA) with disk

Figure 6. Behavioral results and model results. (a) Humans. (b)

Model without noise. (c) Model (noise-center¼0.2, noise-width

¼ 0.15). Error bars are 61 standard error. Panel (a) reprinted

from ‘‘Spatial Separation Between Targets Constrains Mainte-

nance of Attention on Multiple Objects,’’ by W. M. Shim, G. A.

Alvarez, and Y. V. Jiang, 2008, Psychological Bulletin Review,

15(2), p. 393. Copyright 2008, The Psychonomic Society.

Reprinted with permission.
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speed and tracking condition as variables. There was a
significant main effect of disk speed, F(4, 8625)¼ 96.82,
p , 0.001, indicating that accuracy dropped as speed
increased. There was also a significant main effect of
tracking condition, F(2, 8625) ¼ 174.90, p , 0.001,
indicating that difficulty varied across the three
tracking conditions. Finally, there was a much smaller,
but significant, interaction, F(8, 8625)¼ 2.94, p¼ 0.002.

Following Shim et al. (2008), we conducted t tests for
pairs of tracking conditions. Track-2-far accuracy was
significantly higher than Track-2-near accuracy, t(5758)
¼ 14.97, p , 0.001, and this difference held at each
speed level (all ps , 0.05). Track-2-far accuracy was not
significantly different from Track-1 accuracy, t(5758)¼
0.33, p¼ 0.745, and this result held at each speed level
(all ps . 0.05).

These results replicate the three key findings from the
original experiment. The only difference in the simu-
lation analysis was that the advantage for Track-2-far
over Track-2-near held even at the slowest speed. In the
original experiment, this advantage was eliminated at
the slowest speed, suggesting a ceiling effect.

Discussion

As conjectured, IMOT demonstrates accuracy levels
similar to those of humans across a range of noise-
parameter values. Tracking accuracy declines when
objects move faster because there is less overlap
between target locations and the enhanced regions
marking each target’s last-known location. Addition-
ally, accuracy declines when two targets are close to
each other because they suppress each other’s enhanced
regions, which leads to smaller region sizes and, again,
less overlap with the target locations.

The primary difference between IMOT and humans
is that the model fails to achieve ceiling-level accuracy
at the slowest speed. It is possible that humans adjust
their tracking strategy when objects are moving
particularly slowly. Alternatively, there may be low-
level differences between the model and humans in the
size or strength of suppressive fields.

IMOT, like humans, tracks two distant targets as
easily as a single one. This finding is expected because
there is no competition among the targets. They do not
compete for space, because they are too distant to
suppress each other, and they do not compete for
processing time, because they can be tracked via
parallel updating of each target location. However, if
objects are allowed to overlap each other, then location
information should be insufficient for distinguishing
targets from distractors. In that case, serial selection
will be needed, and so the targets should compete for
processing time. To examine this claim, we conducted a
second simulation.

Simulation 2

Our second simulation explores competition between
targets for serial selection, which assists in distinguish-
ing targets from overlapping distractors (e.g., Figure
2d). Because overlapping objects cannot be differenti-
ated by their locations, a target must be selected before
the overlap event begins so that its motion history can
be computed. This information can then be used to
predict where the target will emerge after the overlap
event ends. Notably, because this approach requires
selecting a target before it overlaps another object,
people should be able to track targets through overlap
events more successfully when there are fewer targets
competing for selection.

We evaluated this claim by simulating a MOT
behavioral experiment by Luu and Howe (2015,
experiment 1) in which two-dimensional objects were
allowed to move through each other. Participants
tracked either two or four out of eight total disks. Disks
moved either predictably, changing direction only when
they hit the edge of the display; or unpredictably,
changing direction randomly. Luu and Howe found
that when there were two targets, participants were
more accurate with predictable motion, suggesting that
they used information about motion histories to aid in
tracking. However, when there were four targets,
participants were equally accurate with predictable or
unpredictable motion, suggesting that they failed to
benefit from motion histories.

Experiment description

In their experiment, Luu and Howe (2015) had 15
participants track black disks while maintaining center
fixation. On each trial, two or four disks were
highlighted in red to indicate that they were the targets.
Afterwards, the targets changed back to black, and all
eight disks began moving in straight lines, traveling
through each other but bouncing off the edges of the
display. After 5.5 s, the disks stopped moving and two
were highlighted in sequence. Participants indicated
whether each highlighted disk was a target or a
distractor. As in Simulation 1, the probability that a
highlighted disk was a target was always 50%.

On separate trials, there were two motion conditions:
unpredictable, where each disk changed direction
randomly every 300 to 600 ms, and predictable, where
each disk changed direction only when it hit the edge of
the display. Additionally, there were two target-number
conditions: two and four. Separate motion speeds for
two and four targets were calibrated for each partic-
ipant by finding the speed at which the participant
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achieved 75% accuracy in the predictable motion
condition.

Figure 7a depicts Luu and Howe’s results. There
were three key findings:

� Mean tracking accuracy was higher with predict-
able motion.
� Predictable motion increased accuracy more for
two targets than for four targets.
� The improvement in accuracy was statistically
significant for two targets but not for four targets.

Simulation

To evaluate IMOT, we randomly generated videos
similar to those used by Luu and Howe (2015). These
videos differed from the description in the original
article in the three ways discussed in Simulation 1.
Additionally, the videos were constrained to begin and
end with all disks at least one radius apart, to ensure
that there were no overlap events at the beginning or
end of a trial.

We generated videos in batches of 120: 2 motion-
type conditions 3 2 target-number conditions 3 30.
Each batch corresponded to the videos viewed by one
human participant. To increase statistical power, we
ran the simulation on 90 total batches—equivalent to
six times the number of participants in the original
study—and analyzed by trial.

Following the original experiment, the simulation
used speeds of 58/s and 2.58/s for two and four targets,
respectively, because preliminary work indicated that
the model achieved about 75% accuracy on predictable
motion with these speeds (Lovett, Bridewell, & Bello,
2017). In addition, the simulation used the noise-
parameter values from Simulation 1 (noise-center ¼
0.20, noise-width ¼ 0.15).

Results without selection

We first ran the simulation with the ablated tracking
model, which lacked THREAT HIGHLIGHTER and MAINTE-

NANCE HIGHLIGHTER. Because this model does not
strategically deploy selection during tracking, it should
not benefit from predictable motion trajectories. Figure
7b shows the results. A two-way ANOVA with motion
type and target number as variables was conducted.
There was a significant main effect of motion type, F(1,
10795)¼ 22.55, p , 0.001, indicating that accuracy was

Figure 7. Behavioral results and model results. (a) Humans. (b)

Model without selection. (c) Model (max-threat-distance ¼ 0).

(d) Model (max-threat-distance ¼ 2.8). Error bars are 61

standard error. Panel (a) reprinted from ‘‘Extrapolation Occurs

in Multiple Object Tracking When Eye Movements Are

�

 
Controlled,’’ by T. Luu and P. D. L. Howe, 2015, Attention,

Perception, & Psychophysics, 77(6), p. 1924. Copyright 2015, The

Psychonomic Society. Reprinted with permission.
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higher with unpredictable motion. There was also a
main effect of target number, F(1, 10795)¼ 85.24, p ,
0.001, indicating that accuracy was higher for four
targets. The interaction was not significant, F(1, 10795)
¼ 1.64, p ¼ 0.200.

These results diverge from the human data in two
important ways. First, as expected, accuracy is not
higher with predictable motion trajectories. Second,
accuracy is far lower for two targets than for four
targets (recall that the motion speeds for two targets are
twice as fast as the motion speeds for four targets).

Results without a max threat distance

We next ran the simulation with the full model
(including THREAT HIGHLIGHTER and MAINTENANCE

HIGHLIGHTER), setting THREAT HIGHLIGHTER’s parameter
max-threat-distance ¼ 0 (Figure 7c). Recall that the
model maintains focus on a target that is threatened by
nearby objects. When max-threat-distance is set to
zero, targets are never classified as threatened, so the
model always focuses immediately on whichever target
has the closest threat.

A two-way ANOVA with motion type and target
number as variables was conducted. There was a
significant main effect of motion type, F(1, 10795)¼
19.74, p , 0.001, indicating that accuracy was higher
with predictable motion, and a main effect of target
number, F(1, 10795)¼ 22.57, p , 0.001, indicating that
overall accuracy was higher with four targets. There
was a significant interaction, F(1, 10795)¼ 7.62, p ¼
0.006, indicating that the advantage with predictable
motion was greater for two targets than for four
targets.

Following Luu and Howe’s (2015) methodology, we
conducted t tests comparing predictable with unpre-
dictable motion for each target number. Accuracy was
higher with predictable motion both for two targets,
t(5397)¼9.23, p , 0.001, and for four targets, t(5398)¼
5.73, p , 0.001.

Results with a max threat distance

The previous simulation results matched the finding
that humans use predictable motion more effectively
when they are tracking only two targets. However,
unlike humans, the model also showed a benefit for
predictable motion when tracking four targets. The
model might show this benefit because it can change
focus immediately to whichever target has the closest
threat, catching overlap events that people might miss.
To test for this possibility, we varied the max-threat-
distance parameter, which determines how easily the
model can change its focus. The simulation replicated

the three human findings across a range of parameter
values (see Appendix C). Here, we report the results
with max-threat-distance¼ 2.8, a representative in-
stance which closely fits the human results—compare
Figure 7a and 7d. Note that the distance threshold is
expressed as a multiple of the proto-object’s radius, so
a target is considered threatened when another object is
within 2.8 3 the target’s radius.

A two-way ANOVA with motion type and target
number as variables was conducted. There was a
significant main effect of motion type, F(1, 107955)¼
33.91, p , 0.001, indicating that accuracy was higher
with predictable motion, and a main effect of target
number, F(1, 10795)¼ 11.97, p , 0.001, indicating that
overall accuracy was higher with four targets. There was
a significant interaction, F(1, 10795)¼ 20.29, p , 0.001,
indicating that the advantage with predictable motion
was greater for two targets than for four targets.

We conducted t tests comparing predictable with
unpredictable motion for each target number. Accuracy
was higher with predictable motion for two targets,
t(5397)¼ 7.19, p , 0.001. However, there was no
significant difference between predictable and unpre-
dictable motion for four targets, t(5398)¼0.95, p¼0.343.

Replication of Simulation 1

Recall that Simulation 1 was run with the ablated
model, which lacked the ability to select targets and
compute motion history during tracking. Including this
ability should not change the results, because in the
present model, selection helps only when targets cannot
be distinguished by their location. To test this claim, we
reran Simulation 1 using the complete model with max-
threat-distance¼ 2.8. As expected, we replicated our
previous findings, with all statistical test results coming
out the same.

Discussion

As anticipated, IMOT successfully replicates the
human results. When the model tracks two targets,
accuracy is higher with predictable motion than with
unpredictable motion. When it tracks four targets, the
advantage with predictable motion is weakened, and
the advantage is eliminated entirely with a sufficiently
large max-threat-distance (Figure 7d).

The results demonstrate the importance of selection
for explaining human results. When the model does not
deploy selection to aid in tracking (Figure 7b), its
accuracy does not improve with predictable motion.
Interestingly, IMOT is less accurate with predictable
motion in this case. We speculate that objects may
cluster more closely when they are not randomly
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changing their directions of motion, resulting in more
overlap events that cannot be handled without selection.

When selection is not deployed, we find also that
accuracy when tracking two targets falls far below
accuracy when tracking four. This result is unsurpris-
ing, given that objects in the two-target videos moved
considerably faster than objects in the four-target
videos. The finding that two-target tracking catches up
to four-target tracking when selection is deployed
(Figure 7c) demonstrates that selection is more valuable
when only two targets are competing.

When max-threat-distance ¼ 0 (Figure 7c), four-
target tracking shows some benefit for predictable
motion, indicating that it is possible to track targets
through overlap events even when there are four
targets. However, strategic deployment of selection is
less effective when there are more targets. When max-
threat-distance increases to 2.8 (Figure 7d), the four-
target advantage for predictable motion vanishes,
whereas the two-target advantage remains.

In the present model, increasing max-threat-distance
makes it more difficult to switch focus among targets—
a selected target will appear threatened for longer, and
so it will remain the focus for longer. We concede that a
similar effect might be achieved in other ways, for
example by modeling a general resistance to switch
focus among targets. Thus, the results do not conclu-
sively demonstrate that selection lingers on threatened
targets; rather, they suggest only that participants do
not immediately change focus to the target with the
closest threat.

Lastly, we wish to stress an important point: The
model may receive some benefit from selection even
when tracking four targets. If we compare the results
without selection (Figure 7b) to those with selection
(Figure 7d), performance with four targets does appear
to improve, especially in the predictable motion
condition (61% without selection, 76% with selection).
Given this finding, we believe it is possible that humans
sometimes deploy selection to track targets through
overlap events, even when there are four targets.
However, four-target tracking performance with pre-
dictable motion fails to exceed performance with
unpredictable motion due to a combination of two
factors: In the absence of selection, predictable motion
may be more difficult than unpredictable motion (Figure
7b); and the benefit for selection among four targets is
limited, because each target competes for selection and
there is a tendency to linger on a selected target.

General discussion

The diversity of Simulations 1 and 2 demonstrates
the breadth of IMOT’s explanatory power. By inte-

grating parallel enhancement with serial selection, this
model accounts for both spatial and temporal con-
straints on object tracking. Notably, it tracks moving
targets in parallel via enhancement, but targets can
crowd each other, resulting in smaller enhanced regions
and a greater chance of dropping targets. At the same
time, the model can select a target to process its motion
history and predict its future location, but as the
number of targets increases, there is more competition
among them for selection.

In the following sections, we compare IMOT to
other models of MOT and then discuss how fully the
model explains the findings presented in the Back-
ground. Finally, we consider predictions about object
tracking that follow from the model.

Previous models

Previous computational MOT models fall into three
categories: serial tracking, parallel tracking, and
hybrid. Despite their strengths, none of them can
explain human performance on the two experiments
simulated in this article because in these models there is
no crowding between targets, and motion histories are
not used to track targets through overlap events.

Serial tracking

A serial tracking model attends to each target in
sequence to update that target’s location. Oksama and
Hyönä (2008) propose such a model for multiple-
identity tracking, a task similar to MOT where each
object has a distinct visual appearance (e.g., a different
shape). Their MOMIT (Model of Multiple Identity
Tracking), which is described but not implemented,
uses a spatial index to point to each target’s last-known
location. As objects move, MOMIT serially reattends
to each target to select the current object that best
matches that target’s spatial index. When MOMIT
selects the wrong object as the target, it can detect and
correct the mistake by noticing that the selected object’s
visual appearance does not match that of the target.
Notably, a recent update to MOMIT incorporates
parallel processing of visual features, but still requires
that targets be serially reattended to refresh their
representations (Li, Oksama, & Hyönä, 2019).

In contrast with MOMIT’s serial updating, IMOT
updates all target locations in parallel, so each location
is updated more frequently and there should be fewer
tracking errors. A reduction in tracking errors is
important because the objects in a MOT task are
visually identical, which means that IMOT cannot use
mismatched visual appearances to correct errors.
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Parallel tracking

A parallel tracking model applies the same tracking
mechanism to each target, without any serial compo-
nent. Kazanovich and Borisyuk’s (2006) model uses
oscillating artificial neurons to mark target locations.
For each target, there is a specialized neuron that fires
in synchrony with the neurons representing that
target’s location. Importantly, unlike IMOT, this
model does not process motion histories, and hence
cannot reliably distinguish a target from a distractor
when the two overlap. Instead, after an overlap event
ends, the model arbitrarily chooses either the target or
the distractor and continues tracking that object.

Zhong, Wilson, and Flombaum (2014) evaluate the
benefits of using motion histories in a Bayesian
computational model. At each time step, this model is
given noisy measurements of every object’s location
and determines which objects are targets by comparing
the noisy measurements to the targets’ expected
locations. A target’s expected location is a weighted
average of two values: the noisy measurement of its
location from the previous time step and its predicted
location based on its past motion history. Notably, the
model predicts locations for all targets in parallel—up
to eight targets are used—despite evidence that humans
fail to predict locations for more than two targets
(Howe & Holcombe, 2012; Luu & Howe, 2015).

Zhong et al. (2014) find that their model works best
when little weight is allocated to predicted locations,
even when objects move predictably and can travel
through each other. They conclude that motion
information provides minimal value during tracking.
However, we would argue that their model fails to
benefit from motion information because it does not
need motion histories to disambiguate overlapping
objects. The model is always provided with separate
location measurements for each object, even when two
objects overlap. In contrast, IMOT operates directly on
visual input from a video and is unable to distinguish
the locations of two overlapping objects through visual
appearance alone.

Hybrid tracking

Similar to IMOT, hybrid models track targets in
parallel but can allocate attention to where it is needed
most. Srivastava and Vul (2016) describe a Bayesian,
hybrid model based on the attentional-resource ac-
count of object tracking (Alvarez & Franconeri, 2007).
Their model distributes an attentional resource among
the targets, dynamically allocating more of it to targets
that are threatened by nearby objects. As the amount of
attention assigned to a target increases, the model
correspondingly lowers its uncertainty about the
target’s position, meaning that the target is less likely to
be confused with its neighbors. However, the model is

primarily descriptive of behavior, offering no account
for why allocating more of the resource should decrease
positional uncertainty in humans.

Critically, the Srivastava and Vul (2016) model does
not carry out all the necessary steps for object tracking.
Rather than determining which objects correspond to
the targets, it receives this information as input and
generates only predictions about the likelihood of
confusing targets with distractors. In contrast, IMOT
solves the correspondence problem directly.

Explaining key findings in MOT

The Background section introduced five classes of
MOT findings that any model would ideally address.
Simulations 1 and 2 demonstrate IMOT’s ability to
explain three of these: spatial constraints, dynamic
operation, and sensitivity to motion history. Here, we
discuss each of these and then consider how IMOT
could help explain a fourth class, temporal constraints.

Spatial constraints

IMOT’s tracking accuracy decreases when targets
can move near each other due to crowding (Holcombe
et al., 2014; Shim et al., 2008). More specifically, each
target’s location is marked with an enhanced region,
and enhancing a target’s location results in suppressing
the surrounding area. Neighboring enhanced regions
will mutually suppress each other, resulting in smaller
regions and a greater chance that targets—especially
fast-moving ones—will be dropped.

Dynamic operation

Although IMOT enhances target locations in paral-
lel, it can select a single target as the focus of attention.
Notably, serial selection is strategic, picking out targets
that are threatened by nearby objects and in danger of
becoming lost (Iordanescu et al., 2009; Srivastava &
Vul, 2016).

Sensitivity to motion history

Selecting a threatened target is particularly useful
when objects move predictably, such that the target’s
motion history provides reliable information about
where the target will be in the near future. However,
IMOT shows a diminished advantage for predictable
motion when the number of targets increases (Howe &
Holcombe, 2012; Luu & Howe, 2015), because there is
more competition for selection, and thus a threatened
target is less likely to be selected in a timely manner.
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Temporal constraints

The two experiments simulated in this article involve
targets moving in straight lines, occasionally changing
directions. In contrast, temporal constraints often have
been studied using targets that follow circular trajec-
tories. Recall that there are three key findings from this
research: There is a maximum speed of about 2
rotations/s for tracking circling targets (Holcombe &
Chen, 2012; Verstraten et al., 2000), there is a
maximum temporal frequency of about 7 Hz (Hol-
combe & Chen, 2013), and the maximum speed and
temporal frequency both decrease as the number of
targets increases.

In explaining the circling-target research, we wish to
highlight two key differences between this research and
our Simulation 1 (Shim et al., 2008). Firstly, with
circling targets there is a cost for increasing the number
of targets from one to two, whereas in Simulation 1
there is no cost, provided the targets are far apart.
Secondly, circling targets follow a highly predictable
trajectory, whereas in Simulation 1 the targets move
unpredictably. Note that the circling targets change
direction at unpredictable intervals, but there are only
two possible directions along the circle, and the act of
changing direction itself may draw attention to a target.
In contrast, in Simulation 1 the objects are constantly
changing direction in unpredictable ways to avoid
collisions.

In light of these differences—and considering Sim-
ulation 2, wherein serial selection provides more value
when targets moved predictably—we propose that
participants serially select circling targets, using their
predictable trajectories to anticipate where they will go
next. In this case, selection does not aid in distin-
guishing targets from overlapping distractors; instead,
it aids in distinguishing targets from distractors that
occupy positions recently occupied by the targets.
Critically, because viewers are attempting to predict a
target’s future location along a circular trajectory,
tracking is limited by rotational speed. At above 2
rotations/s, prediction may become impossible either
because the speed is too great to be processed or
because targets outpace the fastest possible predictions.
Finally, because selection must shift serially between
targets, tracking becomes more difficult as the number
of circling targets increases.

Future work

Despite IMOT’s explanatory breadth, the model
does not address a key class of MOT findings: hemifield
advantages. Here we consider how the model could be
refined to explain these advantages and other phe-
nomena that lie outside of the scope of the current
work.

Hemifield advantages

IMOT is insensitive to the hemifield in which objects
are located, but research suggests there is a consider-
able advantage to tracking targets that are split across
hemifields (Alvarez & Cavanagh, 2004; Chen et al.,
2013; Shim et al., 2010). Hemifield advantages could be
addressed in several ways, including limiting suppres-
sive surrounds to affect only other targets in the same
hemifield (Chelazzi, Miller, Duncan, & Desimone,
1993), processing some information such as motion
histories in parallel across the two hemifields, or even
selecting separate foci of attention in each hemifield
(Holcombe & Chen, 2012). Additional simulation
studies would be required to determine how well these
manipulations capture human hemifield advantages.

Target–distractor proximity

Although IMOT explains why tracking becomes
difficult when targets are close to each other, it does not
explain the related finding that tracking becomes
difficult when targets are close to distractors (Shim et
al., 2008; Vater et al., 2017). There are at least two
possible ways that nearby distractors may disrupt
tracking. First, distractors may crowd targets with their
own suppressive surrounds, resulting in a smaller
enhanced region around a target and a greater chance
that the target will be dropped. Second, distractors may
be swapped accidentally with a target. Further research
is needed to evaluate to what extent each of these
occurs, as most MOT studies cannot distinguish
between dropping errors and swapping errors (but see
Drew, Horowitz, & Vogel, 2013; Pylyshyn & Storm,
1988). In the meantime, each effect could be modeled
via changes in OBJECT LOCATOR. To model drops
resulting from nearby distractors, suppressed regions
could be placed around distractors in the model’s
priority map; note that the suppressed region around a
distractor should likely have a lower amplitude than
the suppressed region around a target (Desimone &
Duncan, 1995; Reynolds & Heeger, 2009; Tsotsos,
1990). To model swaps, noise could be added to the
process that matches enhanced regions to proto-
objects, such that any distractor that is close enough to
overlap a target’s enhanced region has a chance of
being treated as the target.

Spatial precision in the periphery

IMOT’s suppressed regions become wider as objects
move farther from the center of gaze, simulating the
increased distance over which objects can crowd each
other (Whitney & Levi, 2011). However, humans
exhibit a general lack of spatial precision when
perceiving objects far from the center of gaze, even
when those objects are not crowded (DeValois &
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DeValois, 1990; Levi, Klein, & Yap, 1987). This
phenomenon could be modeled by scaling the noise
applied when OBJECT LOCATOR matches enhanced
regions to proto-objects, such that the noise increases
with the proto-object’s distance from the center of gaze.

VSTM capacity

IMOT’s VSTM has slots for four objects, consistent
with classic views on VSTM capacity (Pylyshyn &
Storm, 1988; Vogel et al., 2001). However, more recent
work challenges these views, suggesting that VSTM
capacity may vary depending on the amount of
information stored for each object (Bays & Husain,
2008; van den Berg, Shin, Chou, George, & Ma, 2012;
Wilken & Ma, 2004). As further evidence against hard
capacity limits, Alvarez and Franconeri (2007) have
shown that people can track up to eight targets when
they move slowly and are positioned far apart from
each other. Presently, we take a noncommittal position
on VSTM capacity. Because tracking four targets is
sufficient for the simulations reported here, we prefer to
use a fixed-slot model that lacks unnecessary com-
plexity. We may develop a variable-capacity model in
the future, should new simulations require it.

Predictions

A key strength of our computational model is that
we can make testable predictions about object tracking
that go beyond the claims tested in this article’s
simulations. These predictions follow from the under-
lying theory, the model’s implementation details, and
the findings from the two simulations. Here we present
five predictions, two about the MOT task in isolation
and three about the interactions between object
tracking and other attentionally demanding tasks. By
exploring such interactions, we hope to come closer to
understanding how attention is deployed during the
complex, dynamic, multitask situations that humans
face in their everyday lives.

Two targets will compete for selection when they are
threatened simultaneously

The results from Simulation 2 suggest that serial
selection can be strategically deployed to a threatened
target, but that shifting the focus to a new target takes
time. Thus, even when only two targets are tracked,
tracking should suffer if one target draws selection
shortly before the other target requires selection to
distinguish it from an overlapping distractor. The first
target might draw selection because it is threatened or
for some other reason, for example because there is a
salient flash of light at the target’s location.

Note that the example of circling targets suggests
two targets may compete for selection even when
neither is threatened. In this case, selection—which
facilitates tracking fast-moving targets along predict-
able trajectories—may cycle between the targets.

Motion speed and target–target distance will interact

In the present model, targets will be dropped more
frequently if either speed increases or target–target
distance decreases; in either case, there will be less
overlap between an enhanced region at a target’s
previous location and a proto-object at the target’s
current location. The risk of losing targets is greatest
when speeds are high and, at the same time, target–
target distance is small. Therefore, we can predict that
tracking performance should be higher if targets move
slowly when they are near each other and quickly when
far apart, compared to the reverse case where they
move quickly when they are near each other and slowly
when they are far apart.

Targets will compete with a nonvisual dual task for
selection

We now consider how object tracking interacts with
other tasks. IMOT and the ARCADIA framework
more broadly suggest that all attentionally demanding
tasks should compete for selection because there can be
only one focus at a time. Therefore, just as one might
fail to select a target before an overlap event because
another target draws selection, one might similarly fail
because a simultaneously performed, nonvisual task
draws selection.

Competition from a nonvisual dual task was
previously explored by Tombu and Seiffert (2008), who
asked participants to judge the pitch of a tone played
during a MOT task. As a second manipulation, at some
time during the MOT task, tracking would briefly be
made more difficult by speeding up the objects or
moving them closer together. The key finding was that
if the tone was played immediately before tracking
difficulty increased, tracking performance suffered,
compared to a control where the tone was played long
before the MOT task became more difficult. The
experimenters concluded that judging the pitch of the
tone required attentional resources that otherwise
could be devoted to tracking the targets during the
more difficult period.

IMOT is able to make a more fine-grained prediction
than the findings in the Tombu and Seiffert (2008)
experiments: A nonvisual dual task should hamper
tracking performance if it occurs specifically when one
of the targets requires selection. At the same time, the
model is unable to fully explain Tombu and Seiffert’s
results because its selection mechanism does not aid in
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tracking quickly moving targets or in distinguishing
targets from neighboring distractors. The example of
circling targets suggests that, at a minimum, selection
should aid in tracking fast-moving targets that follow
predictable trajectories.

A visual dual task can cause targets to be suppressed

Because object tracking relies on enhancement, a
general attentional mechanism, other visual tasks can
disrupt tracking. For example, suppose participants
perform a spatial-attention task, in which they are cued
to expect a stimulus at a particular location and they
must respond when the appropriate stimulus appears at
that location. While they are waiting for the stimulus to
appear, they must perform a MOT task (Figure 8a;
dotted circles indicate enhanced regions). Performing
these two tasks in parallel should be possible—one
enhanced region can be assigned to the cued location
and other enhanced regions can be assigned to the
tracked targets. However, because there is a suppressive
surround around each enhanced region, targets that
move near the cued location would have their enhanced
region suppressed, just as occurs when targets move
near each other (Figure 8b). These targets would be
dropped more frequently than targets that did not
move near the cued location.

A visual dual task can cause distractors to be enhanced

Consider again a spatial-attention dual task, in
which the region around a cued location is enhanced. If
a distractor moves through this enhanced region, then
the region may become associated with that distrac-

tor—this can occur because the parallel updating
mechanism associates enhanced regions with matching
proto-objects. If the enhanced region becomes associ-
ated with the distractor, then it should begin following
the distractor as that object moves (Figure 8c).
Essentially, the distractor would become a tracked
object, just like the targets.

If a distractor becomes a tracked object, there should
be two measurable effects. First, within the MOT task,
participants should be unable to distinguish the
distractor from the targets. Second, within the spatial-
attention task, participants should respond slowly
when a stimulus appears at the cued location, because
the cued location is no longer being enhanced.

Conclusion

IMOT demonstrates the importance of both parallel
and serial mechanisms in object tracking. Parallel
updating tracks multiple targets’ positions as they
move, and serial selection provides information about a
single target’s motion history, letting the model track
that target when it overlaps another object. With these
mechanisms integrated, the model can account for the
key findings from two MOT experiments, neither of
which can be explained by existing computational
models of object tracking.

First, tracking accuracy worsens when two targets
are near each other or when motion speed increases
(Shim et al., 2008). In Simulation 1, both manipula-
tions cause targets to be dropped because they decrease
the overlap between a target and the enhanced region
marking its last-known location. Neighboring targets

Figure 8. (a) A hypothetical spatial dual task, in which participants must remember a cued location and respond when a letter appears

at that location. Dotted circles indicate enhanced regions. (b) When a target moves near the cued location, its enhanced region is

suppressed. (c) When a distractor moves through the cued location, the enhanced region becomes attached to the distractor.
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suppress each other’s enhanced regions, whereas faster
motion speeds increase the distance a target moves
from its last-known location each cycle. Additionally,
faster motion speeds provide more opportunities for
targets to crowd each other in videos with fixed
durations (Franconeri et al., 2008).

Second, tracking accuracy improves when objects
move predictably, but only when two targets are
tracked (Luu & Howe, 2015). In Simulation 2, selection
enables the processing of a target’s motion history and
the use of this information to track the target through
an overlap event. Importantly, targets that are at risk of
overlapping a nearby object can be prioritized for
selection in the model. But when more than two targets
are tracked, there is heavy competition among the
targets, which causes many target overlap events to go
unnoticed.

Because IMOT’s serial and parallel tracking mech-
anisms are based on selection and enhancement, the
model allows us to make explicit claims about
attention’s role in object tracking and testable predic-
tions about when and how targets will compete for
attention. When targets can be tracked using only their
locations, they will compete for space because neigh-
boring targets crowd each other. When additional
information is needed to track targets, the targets will
also compete for processing time, because serial
selection is needed to process this information. The
nature of this second competition will depend on the
tracking demands—if only one target needs to be
processed at a time, then competition will be minimal
because selection can be strategically deployed to where
it is most needed, but if multiple targets must be
processed simultaneously, or if it is unclear which
target needs to be processed, then competition will be
heavy, and tracking accuracy will suffer.

In addition to showing how selection and enhance-
ment support object tracking, IMOT demonstrates
more generally how these mechanisms interact. After
an object is selected for further processing, the region
around that object is enhanced, which increases the
chance that it or a nearby object will be selected in the
future. We conjecture that this interaction lies at the
heart of visual attention, across its many forms and the
myriad tasks that have been associated with it. For
example, just as spatial regions can be enhanced, visual
features like color can be enhanced, such that
individuals show greater sensitivity to objects that
possess those features (Bichot, Rossi, & Desimone,
2005; Maunsell & Treue, 2006; Yu, Levinthal, &
Franconeri, 2017). Interestingly, Huang (2010) discov-
ered a brief delay between the times when an object is
selected and when its features are enhanced, suggesting
that featural enhancement, like spatial enhancement,
follows selection. Future efforts will explore the limits

of our theoretical account, both in vision and across
cognition more broadly.

Keywords: attention, multiple-object tracking,
computational modeling
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Footnotes

1 https://osf.io/5m9rh.
2 For clarity, we use small caps whenever we refer to

a component’s name.
3 For simplicity, motion history is computed as a

change in location from one cycle to the next. Note that
we do not claim selection is required to compute this
information in humans, only that selection makes this
information available for extrapolation.

4 This approach is task specific. Cues other than size
might be used to detect overlapping objects or three-
dimensional occlusion in other tasks. For example, if
there is an outline around each object, then T-junctions
are a good indicator that one object is occluding
another (Viswanathan & Mingolla, 2002).

5 Overlap events are treated as ongoing for two
additional cycles after they appear to have ended. This
step is necessary because sometimes an overlap event
appears to end early when two objects overlap
perfectly, such that they produce a proto-object the size
of just one object.

6 For example, imagine tracking birds in flight while
their shapes in the visual field change based on
direction of flight and bodily movement. As a result,
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location will play a key role in differentiating the birds
from each other and potential distractors.

7 The term priority map is sometimes seen as guiding
where a person will move their eyes in a scene.
However, it is well understood that overt attention (eye
movements) typically follows covert attention (Deubel
& Schneider, 1996; Peterson, Kramer, & Irwin, 2004).
If we take the view that enhancing regions of interest is
a form of covert attention, then the term priority map is
appropriate.

8 Mexican-hat functions have often been used to
approximate center–surround suppression in vision
(e.g., Kang, Shelley, & Sompolinsky, 2003; Müller,
Mollenhauer, Rösler, & Kleinschmidt, 2005).

9 A central gaze fixation is encouraged in many
MOT experiments, including the experiment modeled
in this article’s Simulation 1. In contrast, it is directly
enforced with an eye tracker in other experiments,
including the experiment modeled in Simulation 2.
Note that when the fixation is merely encouraged,
participants might move their eyes, for example to
follow the centroid of the group of targets (Fehd &
Seiffert, 2008).

10 A highlighting color can be specified when the
component is instantiated. In the present work, objects
at the end of MOT trials are highlighted in blue.

11 The simplified model did select targets at random
during object tracking, but selection incurred no benefit
to tracking.

12 For the sake of clarity, some items have been
given different names from the names they take in the
actual code.
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Appendix A: Communication among
ARCADIA components

IMOT, like other models implemented in the
ARCADIA cognitive system, includes a set of compo-
nents that operate in parallel on each cycle, processing
input from other components and generating output.

Although computations within each ARCADIA com-
ponent may in principle take any form, the output
items generated by components must be in a common
language, so that components can communicate.
Therefore, components generate interlingua elements,
which are tables that associate symbolic keywords with
values.

Table A1 illustrates an interlingua element that
might be generated by COLOR HIGHLIGHTER.12 ID is a
unique numeric identifier, name describes what this
element is (in this case, a candidate for selection), world
is the context in which this element exists, source is the
component that generated this element, and type is the
general type of element. Finally, arguments is itself a
table of keyword/value pairings that can include any
additional information generated by the component. In
this example, COLOR HIGHLIGHTER has provided three
additional pieces of information: a data structure
describing the proto-object that is the candidate for
selection, the reason this proto-object is a candidate (it
has an interesting color), and a textual color label for
the proto-object.

Appendix B: Simulation 1
parameters

In Simulation 1, IMOT tracks the targets nearly
perfectly. To match human error patterns we introduce
noise, which is controlled by two parameters: noise-
center and noise-width. Recall that the model’s OBJECT

LOCATOR can match an enhanced region to a proto-
object only if the width of their overlap, in visual
degrees, is greater than a random value sampled from a
Gaussian distribution centered at noise-center with
standard deviation of noise-width.

To determine the appropriate values for the noise
parameters, we adjusted the parameters by increments
of 0.1 for noise-center and 0.05 for noise-width,
running the full simulation for each pair of possible
values. We classified a simulation run as a success if it

Keyword Value

ID 4651

Name ‘‘selection-candidate’’
World ‘‘reality’’
Source COLOR-HIGHLIGHTER

Type ‘‘instance’’
Arguments

Candidate ,proto-object candidate.

Reason ‘‘color’’
Color-label ‘‘red’’

Table A1. Example of an interlingua element.
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replicated three results from the original experiment
(Shim et al., 2008):

� Tracking accuracy drops as motion speed increas-
es.
� Accuracy for tracking two targets in the same
quadrant is lower than accuracy for tracking two
targets in separate quadrants.
� Accuracy for tracking two targets in separate
quadrants is the same as accuracy for tracking a
single target.

The second result was evaluated both overall and at
each motion-speed level except the slowest speed—
recall that Shim et al. found no difference between
tracking conditions at the slowest speed. The third
result was evaluated overall only—we anticipated that
the two conditions would be identical, but making
comparisons at every motion-speed level increases the
risk that a spurious difference will be detected
occasionally.

Figure B1 depicts the results across all simulation
runs (compare to Figure 6a). A subset of the runs
(highlighted in bold) fully replicated the human results,
and other runs partially replicated them. Generally,
accuracy for tracking two targets in separate quadrants
(Track-2-far) was the same as accuracy for tracking one
target (Track-1), whereas accuracy for tracking two
targets in the same quadrant (Track-2-near) was lower.
But there was a ceiling effect with low noise and a floor
effect with high noise.

Appendix C: Simulation 2
parameters

In Simulation 2, IMOT benefits from predictable
motion both with two and with four targets. To match
human error patterns, we introduce the max-threat-
distance parameter, which determines whether a target
will be classified as threatened. Recall that focus will

Figure B1. Simulation 1 results across a range of noise-center and noise-width values. The graphs highlighted in bold show simulation

runs that replicated the human results.
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linger on a target until its threat distance rises above

this value.

To determine the appropriate max-threat-distance,

we adjusted the parameter by increments of 0.2,

running the full simulation for each possible value. We

classified a run as a success if it replicated four results

from the original experiment (Luu & Howe, 2015):

� Tracking accuracy is higher with predictable
motion.
� There is a significant interaction between motion
type and target number, reflecting a greater benefit
for predictable motion when two targets are
tracked.
� When two targets are tracked, accuracy is higher
with predictable motion.

Figure C1. Simulation 2 results across a range of max-threat-distance values. The graphs with asterisks show simulation runs that

replicated the human results. Error bars are 61 standard error.
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� When four targets are tracked, accuracy is the
same with predictable or unpredictable motion.

Figure C1 depicts the results across all simulation runs
(compare to Figure 7a). Runs with a max-threat-distance
between 2.6 and 3.8 (marked with an asterisk in the
figure) replicate the human results. When the parameter is
lower than 2.6, the runs fail to replicate the fourth result:
There is a benefit for predictable motion with four targets,

suggesting that the model switches its selection focus
between targets more easily than humans. When the
parameter is higher than 3.8, the runs fail to replicate the
first result: There is no overall benefit for predictable
motion, suggesting that the model switches its focus less
easily than humans. Notably, all runs replicate the second
result: The benefit for predictable motion is always
greater with two targets than it is with four targets.

Journal of Vision (2019) 19(14):23, 1–31 Lovett, Bridewell, & Bello 31

Downloaded from jov.arvojournals.org on 08/10/2022


	Introduction
	Background
	A theory of enhancement and
	f01
	The ARCADIA modeling framework
	f02
	Integrated model of object tracking
	f03
	f04
	t01
	e01
	e02
	e03
	e04
	Simulation 1
	f05
	f06
	Simulation 2
	f07
	General discussion
	f08
	n1
	n2
	n3
	n4
	n5
	n6
	n7
	n8
	n9
	n10
	n11
	n12
	Alvarez1
	Alvarez2
	Awh1
	Bays1
	Bettencourt1
	Bichot1
	Bisley1
	Bridewell1
	Bridewell2
	Briggs1
	Carlson1
	Cavanagh1
	Chelazzi1
	Chen1
	Dakin1
	Dawson1
	Desimone1
	Deubel1
	DeValois1
	Doran1
	Drew1
	Drew2
	Drew3
	Egeth1
	Egly1
	Eriksen1
	Fecteau1
	Fehd1
	Franconeri1
	Franconeri2
	Holcombe1
	Holcombe2
	Holcombe3
	Horowitz1
	Howard1
	Howe1
	Huang1
	Hudson1
	Iordanescu1
	Kang1
	Kazanovich1
	Kool1
	Kramer1
	Kunar1
	Lee1
	Levi1
	Li1
	Lovett1
	Luck1
	Luu1
	Maunsell1
	McMains1
	Meyerhoff1
	Meyerhoff2
	Muller1
	Oksama1
	Oksama2
	Palmer1
	Peterson1
	Posner1
	Pylyshyn1
	Pylyshyn2
	Pylyshyn3
	Pylyshyn4
	Rensink1
	Rensink2
	Reynolds1
	Roelfsema1
	Shim1
	Shim2
	Simons1
	Somers1
	Srivastava1
	Sundberg1
	Tombu1
	Treisman1
	Tsotsos1
	Tsotsos2
	vandenBerg1
	Vater1
	Verstraten1
	Viswanathan1
	Vogel1
	Whitney1
	Wilken1
	Wolfe1
	Wolfe2
	Yeshurun1
	Yu1
	Zelinsky1
	Zhong1
	t02

