
A Constraint Language for Process Model Induction

Matt Bravo mbravo@stanford.edu
Will Bridewell willb@csli.stanford.edu

Computational Learning Laboratory, CSLI, Stanford University, Stanford, CA 94305 USA

Ljupčo Todorovski ljupco.todorovski@fu.uni-lj.si

Computational Learning Laboratory, CSLI, Stanford University, Stanford, CA 94305 USA
University of Ljubljana, Faculty of Administration, Gosarjeva 5, SI-1000 Ljubljana, Slovenia

Abstract

We define the inductive process model-
ing task as the automated construction of
quantitative process models from time series
and background knowledge. In this task,
the background knowledge comprises generic
processes that along with a given set of en-
tities define the space of candidate model
structures. Typically this space grows expo-
nentially with the size of the library, so past
research introduced a hierarchical organiza-
tion on the processes to constrain that space
to a limited set of plausible configurations.
However, organizing the processes into a hi-
erarchy takes considerable effort, leads to im-
plicit constraints, and creates a complex rela-
tionship between the knowledge of what pro-
cesses exist and the knowledge of how one can
combine them. To address these problems,
we developed SC-IPM1, an inductive process
modeler that uses declarative constraints to
reduce the size of the model structure space.
In this paper, we describe the constraint for-
malism and how it guides SC-IPM’s search.

1. Introduction

Scientists build models to explain observations of com-
plex, dynamical systems. This task requires either an
implicit or explicit search through the space of plausi-
ble models (Langley et al., 1987). However, the diffi-
culty of model development and parameter estimation
encourages a greedy search and the scientists may con-
sider only a few alternatives before selecting a final
structure. We seek to build tools that help scientists

1Pronounced “Skip ’em”, SC-IPM is an acronym for
“Satisfying Constraints to Induce Process Models”

systematically create and evaluate alternative models
so that they can improve their understanding of the
studied phenomenon. To accomplish this goal, we re-
quire a representation for domain knowledge that lets
experts interactively guide the system’s search.

This paper extends previous work on inductive pro-
cess modeling (Langley et al., 2002; Langley et al.,
2003; Todorovski et al., 2005), by adding a formalism
for stating explicit, structural constraints. The gen-
eral problem of inductive process modeling takes as
input a set of time series for observed variables, back-
ground knowledge in the form of generic processes and
entities, and a set of instantiated entities whose prop-
erties may be associated with the data. As output, a
learning system should produce a quantitative process
model that explains the data in terms of the back-
ground knowledge. A basic approach to this task in-
volves instantiating the generic process with the given
entities as allowed, exhaustively combining the instan-
tiated components into model structures, fitting the
numeric parameters, and returning those models with
the best quantitative fits to the data. Typically, this
strategy will lead to an search space that is exponen-
tial in the number of instantiated processes and that
includes a several implausible structures.

To address these problems, one can introduce con-
straints on the model structures. Previously, Todor-
ovski et al. (2005) developed a formalism based on
the decomposition of generic processes and the speci-
fication of a process hierarchy. Our recent experience
indicates that this structure places a considerable bur-
den on the domain expert, leads to implicit and inter-
twined constraints, and creates a complex relationship
between the knowledge of what processes exist and
that of how to combine them.

In this paper we describe a knowledge representation
that addresses the shortcomings of the process hierar-



A Constraint Language for Process Model Induction

chy. To reduce the effort required to encode a process
library, we designed isolated, declarative constraints
that experts can add individually without concern for
how they fit into a complex hierarchical structure. Due
to its piecemeal nature, this formalism also alleviates
the problem of obfuscated constraints that are entan-
gled with the individual processes. In the next section,
we illustrate and define these constraints using a sim-
plified population dynamics library and discuss how
they guide the search. We end the paper with a dis-
cussion of related and future work.

2. Declarative Constraints

Table 1 presents a sketch of a constrained library for
population dynamics. Notably the generic entities and
processes lack the equations, parameter, and variables
that define the allowed behaviors. In this example,
generic entities have names and processes have both
names and placeholders and type information for the
instantiated entities that they can relate. Each con-
straint shares a similar structure comprising a name, a
type, and a set of generic entities with an optional en-
tity list. Whereas the name of a constraint serves only
descriptive purposes, the type declares a logical rela-
tion among the listed generic processes. The formal-
ism supports four types, including always-together, at-
most-one, exactly-one, and necessary. An entity spec-
ified along with a process specializes the constraint
based on the entity. For example, “Optional Light
Limitation” from Table 1 states that a model may
contain no more than one of exponential growth, lo-
gistic growth, and light limitation, but it may one in-
stance of light limitation per light source. After de-
scribing how we use these constraints, we define their
logical semantics.

We built the inductive process modeler SC-IPM to
interpret a library that includes such declarative con-
straints. To search the space of model structures, this
system begins by binding the generic processes to the
instantiated entities, each of which becomes a literal
for propositional formulae. Next, the program trans-
forms each constraint into a corresponding Boolean
logic formulae and combines them into a single con-
junctive sentence. Valid solutions of this sentence cor-
respond to plausible model structures as defined by
the library, such that true literals (i.e., bound pro-
cesses) become part of the model and false ones do
not. Currently, SC-IPM can convert the formula into
disjunctive normal form, which is trivial to satisfy, or
into conjunctive normal form, for which it uses a ver-
sion of the WalkSAT (Selman et al., 1993) algorithm
to perform local search.

Table 1. A simplified SC-IPM library for population dy-
namics.

entity producer
entity grazer
entity nutrient
entity light

process exponential growth
relates P{producer}

process logistic growth
relates P{producer}

process limited growth
relates P{producer}, N{nutrient}

process ivlev
relates P{producer}, G{grazer}

process ratio dependent
relates P{producer}, G{grazer}

process nutrient limitation
relates P{producer}, N{nutrient}

process light limitation
relates P{producer}, L{light}

process exponential loss
relates P{producer}

process degradation
relates G{grazer}

constraint ‘Growth Alternatives’
type exactly-one
processes

exponential growth
logistic growth
limited growth

constraint ‘Predation Alternatives’
type exactly-one
processes

ivlev
ratio dependent

constraint ‘Nutrient Limited Growth’
type always-together
processes

limited growth
nutrient limitation(N)

constraint ‘Optional Light Limitation’
type at-most-one
processes

exponential growth
logistic growth
light limitation(L)

constraint ‘Mandatory Loss’
type necessary
processes

exponential loss
degradation

2.1. Always Together

In an always-together constraint the processes must oc-
cur together or not at all. Recall that for a process to



A Constraint Language for Process Model Induction

occur in a model the equivalent literal must be true,
hence we can write always-together constraints such
that a disjunction of the literals implies their conjunc-
tion. As an example, consider the “Nutrient Limited
Growth” constraint in Table 1 when there is one nutri-
ent n and one producer p. SC-IPM will produce the
bound processes nut lim(n) and lim growth(n), and
the formula:

¬(nut lim(n) ∨ lim growth(n)) ∨
(nut lim(n) ∧ lim growth(n))

Since nutrient limitation is specialized on its nutrient
argument, when multiple instantiations of that generic
entity exist, the program will produce similar a for-
mula for each one.2

2.2. Exactly One

The exactly-one constraint states that one and only
one instantiation of the listed generic processes can
occur per model. Logically, one can represent this re-
quirement as a disjunctive logic formula. To illustrate,
consider the “Growth Alternatives” constraint in Ta-
ble 1. When the corresponding processes are bound,
SC-IPM produces the following formula.

(exp growth ∧ ¬log growth ∧ ¬lim growth) ∨
(¬exp growth ∧ log growth ∧ ¬lim growth) ∨
(¬exp growth ∧ ¬log growth ∧ lim growth)

2.3. At Most One

The at-most-one constraint is similar to exactly-one
with the added condition that it is satisfied when no
instantiations of the listed generic processes appear.
The at-most-one logical formula is the exactly-one for-
mula appended with a conjunction where every literal
is negated. This constraint lets one specify optional
processes such as light limitation in Table 1. Given a
producer p and a light source l, the “Optional Light
Limitation” constraint translates as

(exp growth ∧ ¬log growth ∧ ¬light lim(n)) ∨
(¬exp growth ∧ log growth ∧ ¬light lim(n)) ∨
(¬exp growth ∧ ¬log growth ∧ light lim(n)) ∨
(¬exp growth ∧ ¬log growth ∧ ¬light lim(n))

2.4. Necessary

The necessary constraint forces processes to occur in
a model. The corresponding logical formula consists
of a conjunction of all the bound processes related to

2Although both entities bind to the generic process, we
show only those entities on which the constraint is special-
ized to highlight the relationship.

the constraint. To illustrate, consider the “Mandatory
Loss” constraint from Table 1, which is represented as

(exponential loss ∧ degradation)

Using these four constraint types we give domain ex-
perts powerful building blocks to translate their knowl-
edge of valid model structures into precise, machine
readable information.

3. Related and Future Work

SC-IPM reflects influences from many sources. In par-
ticular, the task of inductive process modeling com-
bines research on qualitative process theory (Forbus,
1984) and equation discovery (Langley et al., 1987) as
they are applied in scientific and engineering domains.
For example, Falkenhainer and Forbus’s (Falkenhainer
& Forbus, 1991) work on compositional modeling em-
phasizes the construction of qualitative models from
fragments similar to our own generic processes. Simi-
larly, Żytkow et al’s (Żytkow et al., 1990) Fahrenheit
identified quantitative regularities from electrochemi-
cal experiments by searching through a space of candi-
date functional forms for which it then fit parameters.

More recently, the Pret system (Bradley et al., 2001)
used general mathematical knowledge along with more
specific domain expertise to constrain the construction
of quantitative models of dynamic systems. Unlike the
constraints in SC-IPM, those used by Pret ruled out
systems of equations based primarily on qualitative
behavior rather than process-level knowledge. In this
respect, Todorovski’s Lagramge (Todorovski, 2003)
most closely resembles the current work in that it uses
constrained processes to organize the search space.
However, that system shares the representational bur-
dens of the hierarchical process libraries (Todorovski
et al., 2005) that the current work alleviates.

To extend this work, we intend SC-IPM to provide
the foundation for an interactive modeling and discov-
ery environment. The first step in this direction in-
volves the system’s incorporation into Prometheus
(Bridewell et al., 2006), which supports the construc-
tion, evaluation, and revision of quantitative process
models. The next step involves the development of
tools to help scientists identify new domain-level con-
straints. To this end, our recent work on learning
declarative bias (Bridewell & Todorovski, 2007) indi-
cates one possible approach.

In this paper, we defined a modular constraint lan-
guage for inductive process modeling. Moreover, we
described how to transform the supported restrictions
on model structure into a satisfaction problem that



A Constraint Language for Process Model Induction

one can solve with readily available tools. We expect
this approach to ease the acquisition of domain-level
knowledge when compared to the use of hierarchical
process libraries, and we plan to perform a more care-
ful analysis of the two formalisms in the future.

Acknowledgments

This research was supported by Grant No. IIS-
0326059 from the National Science Foundation. We
thank Pat Langley and Stuart Borrett for discussions
that influenced this paper.

References

Bradley, E., Easley, M., & Stolle, R. (2001). Reason-
ing about nonlinear system identification. Artificial
Intelligence, 133, 139–188.

Bridewell, W., Sánchez, J. N., Langley, P., & Billman,
D. (2006). An interactive environment for the mod-
eling and discovery of scientific knowledge. Inter-
national Journal of Human–Computer Studies, 64,
1099–1114.

Bridewell, W., & Todorovski, L. (2007). Learning
declarative bias. Proceedings of the Seventeenth In-
ternational Conference on Inductive Logic Program-
ming (p. to appear). Corvallis, WA.

Falkenhainer, B., & Forbus, K. D. (1991). Compo-
sitional modeling: Finding the right model for the
job. Artificial Intelligence, 51, 95–143.

Forbus, K. D. (1984). Qualitative process theory. Ar-
tificial Intelligence, 24, 85–168.

Langley, P., George, D., Bay, S. D., & Saito, K.
(2003). Robust induction of process models from
time-series data. Proceedings of the Twentieth In-
ternational Conference on Machine Learning (pp.
432–439). Washington, D.C.

Langley, P., Sánchez, J., Todorovski, L., & Džeroski,
S. (2002). Inducing process models from continu-
ous data. Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning (pp. 347–
354). Sydney.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow,
J. M. (1987). Scientific discovery: Computational
explorations of the creative process. Cambridge, MA,
USA: MIT Press.

Selman, B., Kautz, H. A., & Cohen, B. (1993). Local
search strategies for satisfiability testing. Proceed-
ings of the Second DIMACS Challange on Cliques,

Coloring, and Satisfiability (pp. 521–532). Provi-
dence, RI.

Todorovski, L. (2003). Using domain knowledge for
automated modeling of dynamic systems with equa-
tion discovery. Doctoral dissertation, Faculty of
computer and information science, University of
Ljubljana, Ljubljana, Slovenia.

Todorovski, L., Bridewell, W., Shiran, O., & Lang-
ley, P. (2005). Inducing hierarchical process models
in dynamic domains. Proceedings of the Twentieth
National Conference on Artificial Intelligence (pp.
892–897). Pittsburgh, PA.

Żytkow, J. M., Zhu, J., & Hussam, A. (1990). Au-
tomated discovery in a chemistry laboratory. Pro-
ceedings of the Eighth National Conference on Arti-
ficial Intelligence (pp. 889–894). Boston, MA: AAAI
Press.


