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Abstract

We present a computational model of attentional capture in
humans. The model distinguishes between automatic mecha-
nisms that directly determine the focus of visual attention, and
deliberate mental actions an individual can perform to influ-
ence these mechanisms. The automatic mechanisms select an
object as the focus of attention and enhance its location and
features, so that nearby or similar objects are likely to be se-
lected in the future. The deliberate actions include engaging
with a selected object to further enhance its features, and re-
trieving a previously selected object from memory. By per-
forming these actions, the model is able to exert limited top-
down control over capture, increasing the probability that task-
relevant objects will be attended and irrelevant objects will be
ignored. To evaluate the model, we conduct a simulation of a
recent visual search study, demonstrating that the model can
account for three established factors that are known to influ-
ence capture.
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Introduction

What drives attentional capture? That is, when we view a
scene, why is our attention drawn to one object, and not to
another? This question is important because where we at-
tend determines what information we represent. Whether we
are reading a map, driving a car, or shopping at a store, we
can perform the task more efficiently if we attend to objects
that provide relevant information and ignore task-irrelevant
objects.

Much of the debate over attentional capture concerns the
role of top-down control (Folk, Remington, & Johnston,
1992; Miiller, Reimann, & Krummenacher, 2003; Theeuwes,
Reimann, & Mortier, 2006). To what extent can humans de-
liberately manipulate our own mental states, such that task-
relevant objects are more likely to be attended? The evidence
suggests that in many cases, task-relevant objects draw atten-
tion not because of deliberate control, but because they are
similar to objects we have attended recently. For example, if
a task involves looking for red objects, the act of finding a
red object on previous trials will prime the viewer to find one
more easily on future trials (Maljkovic & Nakayama, 1994;
Theeuwes et al., 2006). However, in some cases participants
appear to be able to strategically tune their attentional systems
based on semantic information, such as a word describing the
color of the object they should find next (Leonard & Egeth,
2008; Belopolsky & Awh, 2016).

To better understand how top-down goals affect attentional
capture, it is helpful to model the specific mechanisms un-
derlying attention. We previously developed a model of
multiple-object tracking that relied on two attentional mech-
anisms: selection and enhancement (Lovett, Bridewell, &
Bello, 2017). Selection picks out an item for further pro-
cessing, and may be thought of as a generalized form of at-
tentional capture, whereas enhancement increases sensitivity
to stimuli at a particular location or with particular features.
These two mechanisms are closely interwoven: after an ob-
ject is selected, its location and features are enhanced, such
that objects at the same location or with similar visual fea-
tures are more likely to be selected in the future.

Here, we present a novel computational model that applies
the selection and enhancement mechanisms to a visual search
task, in which participants must find a blue or orange circle in
a field of distractor circles and judge the orientation of a line
inside it (Figure 1). Critically for the topic at hand, neither se-
lection nor enhancement is directly controlled in the model.
However, other deliberate actions can influence what gets en-
hanced, thereby biasing the model to select task-relevant ob-
jects. In particular, after an object is selected, if the object is
task-relevant then the model can engage with it. Engagement
is the act of maintaining focus on an object while reasoning
about its features, for example, judging the orientation of a
line inside an attended circle. Engagement leads to greater
enhancement of an object’s location and features, which sup-
ports sustained selection of that object but also causes objects
with similar features to be selected in the future.

In the model, engagement also causes the object’s repre-
sentation to be stored in long-term memory, from which it
can be retrieved at a later time. Thus, if the model later re-
ceives a cue, for example indicating that the next search target
will be orange, it can deliberately retrieve a representation
of a previously selected orange object from memory, allow-
ing that representation to be selected and engaged with, so
that orange objects are more likely to be selected.

In the following section, we describe three factors that af-
fect attentional capture, and we argue that our model, which
integrates selection and enhancement mechanisms with delib-
erate mental actions, can explain each factor. We then present
the model and describe an evaluation in which it simulates hu-
man performance on a search task. We close by considering
predictions of the model and directions for future research.
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Background

At least three factors govern which objects capture visual at-
tention when viewing a scene: physical salience, selection
history, and top-down goals (Awh, Belopolsky, & Theeuwes,
2012). Physical salience increases with the amount of con-
trast between an object and the rest of the scene, but de-
creases with the amount of contrast between the other objects
in a scene; for example, a red circle will be strongly salient
in a field of identical green squares (Duncan & Humphreys,
1989). Salience is determined by both local contrast (between
an object and its immediate surroundings) and global contrast
(between an object and the other objects throughout the visual
scene) (Nothdurft, 1993; Madison, Lleras, & Buetti, 2018).

Whereas salience is a property of the visual stimuli, selec-
tion history relates to the viewer’s mental state. An object
will tend to draw attention if it is visually similar to objects
that have been attended in the recent past. In search tasks,
this effect often manifests as intertrial priming, where a tar-
get is found more easily if its features remain constant from
one trial to the next (Maljkovic & Nakayama, 1994). Simi-
larly, a target is found more easily if it is in the same location
as a recently attended object (Folk et al., 1992).

Finally, top-down goals involve deliberate control over
what object captures attention. This effect is demonstrated
when viewers see a cue describing a target, rather than an
object similar to the target, and then are able to find the tar-
get more readily. A spatially descriptive cue might be an
arrow pointing to the region where the target will appear
(Posner, 1980), whereas a featurally descriptive cue might
be a word describing the target’s distinguishing feature (e.g.,
“red”) (Leonard & Egeth, 2008). The ability to use these cues
suggests the viewer is making an adjustment that causes ob-
jects that match the description to draw attention.

Recently, Belopolsky and Awh (2016) examined the com-
bined contributions of these three factors to attentional cap-
ture. They used a search task in which participants viewed
six colored circles, found a target circle that could be either
blue or orange, and reported whether the line inside the circle
was horizontal or vertical (Figure 1). To explore the effect
of salience, the colors of the distractor circles were varied:
on half the trials, all the distractors were green, resulting in a
salient target, whereas on the other half, the distractors were
all different colors, resulting in a nonsalient target. To ex-
plore the effect of top-down goals, each search trial was pre-
ceded by a verbal cue, either the word “blue” or “orange,”
that predicted the upcoming target’s color 80% of the time.
Finally, to explore the effect of selection history, performance
on repetition trials, where the target’s color was the same as
the color from the previous trial (e.g., the circle was orange
for two trials in a row), was contrasted with performance on
non-repetition trials.

Critically, in one study Belopolsky and Awh (2016) pre-
sented the search display for only 100 ms, after which the
lines within each circle were masked. This brief display time
has two major advantages: (1) there is no time to saccade to
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Figure 1: Examples of visual search task with a nonsalient
target from Belopolsky and Awh (2016). The top row shows a
valid trial with an orange target (appears brownish), whereas
the bottom row shows an invalid trial with a blue target. The
blue circle is dotted for illustration purposes.

one of the circles, so eye movements cannot be a factor, and
(2) if the first circle attended by the participants is neither blue
nor orange, there is no time to look for another circle. Thus,
the authors were able to isolate attentional capture from the
separate task of assessing whether an attended object meets
the search criteria.

Figure 2 shows the experiment results. Accuracy increased
when the target was salient, when the cue was valid (e.g.,
the cue “orange” preceded an orange circle), or when a tar-
get color repeated, indicating that each of the three factors
contributed to attentional capture. In addition, there were nu-
merous interactions, notably, cue validity had a greater effect
when the target was nonsalient, target repetition had a greater
effect when the target was nonsalient, and there was a three-
way interaction among the factors. We propose that these
interactions are driven by a ceiling effect. As an example,
when a target is salient, there is a high likelihood of attending
to it during the critical 100 ms, and thus there is little room
for additional improvement if the cue is valid.
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Figure 2: Visual search results from Belopolsky and Awh
(2016). Error bars are +1 SE.



Selection and Enhancement

Both selection history and top-down goals may result from
an interaction between selection and enhancement. After an
object is selected, viewers show enhanced sensitivity to other
objects in the same location or with the same visual features
(Posner, 1980; Egly, Driver, & Rafal, 1994; Bichot, Rossi, &
Desimone, 2005). Enhancement manifests as both a greater
probability of selecting a stimulus among a field of distrac-
tors, and a shorter delay between stimulus onset and selection.
Neural evidence suggests enhancement is rooted in modula-
tion of the early visual cortex, for example, after a red object
is selected, neurons will respond more strongly to red stimuli
throughout the visual field (Somers, Dale, Seiffert, & Tootell,
1999; Saenz, Buracas, & Boynton, 2002).

Applying selection and enhancement to the Belopolsky and
Awh (2016) study (discussed previously), the effect of selec-
tion history can be readily explained: participants should se-
lect an orange circle more quickly if the previous target was
also orange because the recent selection would cause the or-
ange color to be enhanced. Explaining top-down goals re-
quires one further step—-after participants view a cue such
as the word “orange,” they must perform some mental action
that produces a representation of an orange object, so that the
representation can be selected and the color orange can be
enhanced. We propose that participants retrieve a previous
example of an orange object from memory. Such a retrieval
should be easy, as participants are regularly engaging with
orange circles throughout the experiment (note that one al-
ternate hypothesis might be that participants perform mental
imagery, imagining an orange circle).

In the next section, we describe a computational model
of human performance on the Belopolsky and Awh (2016)
search task.

Model

The model is based on three core claims about human atten-
tional processing.

1) Selection picks out a single focus of attention, such as
an object in the visual field. Objects are selected based on
their activation strength, which is a combination of physical
salience and spatial/featural enhancement. An object with a
higher activation strength is more likely to be selected from
among a field of other objects. In addition, an object with a
higher activation strength will be selected more quickly after
its onset.

2) Selecting an object enables constructing an object rep-
resentation that can be stored in visual short-term memory
(VSTM), which is a low-capacity store for representations of
recently selected objects (Treisman & Gelade, 1980; Vogel,
Woodman, & Luck, 2001). Once an object is represented in
VSTM, the viewer can decide to engage or disengage with
the object, depending on whether the object is task relevant.
Engagement makes an object’s features accessible for further
reasoning and supports storing the object’s representation in
long-term memory (LTM), where it will be available for re-
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trieval at a later time. In addition, engagement causes an ob-
ject’s location and features to be enhanced, which helps to
maintain focus on the object, while also increasing the prob-
ability that nearby or similar objects will be selected. In con-
trast, disengaging from the object causes its location to be
suppressed, so that a different object can be selected.

3) A viewer can retrieve an object representation match-
ing a verbal cue (e.g., “orange”) from LTM. If this retrieved
object representation is selected, then it will be stored back in
VSTM, and its features can be enhanced.

Model Framework

The model is implemented in ARCADIA (Bridewell & Bello,
2016), a computational framework developed to explore the
relationships among attention, perception, cognition, and ac-
tion. ARCADIA models operate over a sequence of cycles.
On each cycle, a set of components work in parallel, pro-
cessing input and generating output. One output item is se-
lected as the focus of attention, and then the next cycle com-
mences, with components receiving as input the output from
other components on the previous cycle.

Models built in ARCADIA consist of (1) a set of compo-
nents; (2) an attentional strategy, which sets out the priorities
for which component’s output will be selected as the focus of
attention after each cycle, and (3) optionally, a set of stimulus-
response links, which indicate that once certain conditions are
met, an action should be taken.

Model Runthrough

Figure 3 presents the model’s components and illustrates the
flow of information. Thin arrows indicate information that
flows on every cycle, thick arrows indicate information that
flows only when it is selected as the focus of attention, and
arrows accompanied by words indicate information that flows
only when an action is taken. In the following sections, we
shall describe the components and the flow of information in
detail, using the search task in Figure 1 as a running example.
Note that the model is designed to run on stimuli identical
to those shown to humans, with one exception: because the
model lacks reading comprehension, the verbal cues “orange”
and “blue” are replaced with horizontal and vertical rectan-
gles, respectively. Thus, a horizontal rectangle indicates that
the next target will likely be orange.

Figure 3 also provides the model’s stimulus-response links,
which indicate the conditions under which the model should
engage with an object, retrieve an object representation
from memory, or respond by pressing a virtual button to
end a trial. Whereas many of the model’s components per-
form general-purpose visual processing and have been used
in other task models (Bridewell & Bello, 2016; Lovett et
al., 2017), the stimulus-response links encode task-specific
knowledge about when actions should be performed (e.g., a
horizontal rectangle indicates an orange object should be re-
trieved from memory). These actions provide a means for
the model to influence the selection and enhancement mech-
anisms, and thereby increase the likelihood of task-relevant
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Figure 3: Left: Flow of information between model components. Right: Stimulus-response links for the model.

objects being selected.

Returning to the model’s components, processing begins
with the Image Segmenter, which takes each frame from an
input video and segments it into regions representing possi-
ble objects. In the current example, each video begins with
a horizontal or vertical rectangle, so the component identifies
only one region of interest. Later, when there is a fixation cir-
cle surrounded by six larger circles, the component identifies
seven regions.

Regions of interest are quickly forgotten unless they are
selected as the focus of attention. To this end, components
known as highlighters suggest particular regions as candi-
dates for attention. In the present model, the Activation High-
lighter suggests a region if its combined salience and en-
hancement (discussed in greater detail later) exceeds a thresh-
old. In contrast, the Maintenance Highlighter suggests the re-
gion whose location matches the current focus of attention;
this component supports maintaining focus on an object over
time. Finally, the VSTM Highlighter suggests a region whose
location matches any object represented in VSTM; this com-
ponent supports returning focus to a recently selected object.
Note that the model’s attentional strategy gives the highest
priority to the Activation Highlighter and the lowest priority
to the VSTM Highlighter. This means the model will (1) fo-
cus on an object with a sufficiently high activation strength,
or if none have a sufficiently high strength, (2) maintain fo-
cus on the currently selected object, or if no current object is
selected, (3) return focus to a recently selected object.

In the visual search example, when only the fixation circle
is visible, it will be selected. When the six outer circles ap-
pear around the fixation circle, focus will be maintained on
the fixation circle until the activation strength of one of the
outer circles exceeds the threshold.

After aregion is selected, the Object-File Binder constructs
an object representation describing what is found at that re-
gion, while at the same time the Object Locator records the
region’s location and begins tracking the object. The object
representation includes the object’s physical dimensions and
visual features (color, orientation, and brightness). In the cur-
rent example, the representation contains the necessary in-
formation for determining whether a rectangle is vertical or

horizontal, determining the color of a circle, or determining
whether the line inside a circle is horizontal or vertical.

After an object representation is constructed, the atten-
tional strategy prioritizes selecting it as the focus of attention,
so that it can be stored in VSTM (visual short-term memory)
which holds representations of the four most recently selected
objects. At this point, if the object is task-relevant (a blue
or orange target circle, or a vertical or horizontal rectangular
cue), the model’s stimulus-response links trigger an engage
action (Figure 3, right side). Engaging with an object causes
its representation to move into Working Memory, where it
is accessible to other components. In addition, engaging
causes the object’s location and features to be enhanced (in
the present model, the location is enhanced only when the
object is visible, and the only feature that can be enhanced is
color). For simplicity, if the model does not engage with an
object, then the model behaves as if it had disengaged with
the object: the object’s location is suppressed, which encour-
ages selection of other objects. Note that all enhancement and
suppression effects last only while the object is remembered
in VSTM.

In the model, Working Memory functions as a conduit be-
tween VSTM and LTM. After a representation is copied from
VSTM to Working Memory, it is stored in LTM, which has
a greater capacity than VSTM. Later, if the model performs
a retrieve action, an object representation is copied back
into Working Memory, where it can be selected and stored in
VSTM. The model’s stimulus-response links specify that it
should retrieve an orange object after engaging with a hori-
zontal rectangle, or retrieve a blue object after engaging with
a vertical rectangle.

In the visual search example, the interactions between
VSTM, Working Memory, and LTM give rise to effects of se-
lection history and top-down goals. Suppose two sequential
trials each involve an orange circle, and suppose the model
successfully selects the orange circle on the first trial. Begin-
ning with this first orange circle, the model will perform the
following sequence of selections:

1. Select the first orange circle and generate a response. This
ends the first trial.
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2. Select the rectangular cue at the beginning of the next trial.

3. Based on the cue, retrieve an object representation from
LTM and store it in Working Memory. Select this object
representation.

4. Select the fixation circle that precedes the critical 100 ms.

As each of these object or object representations is selected,
it will be stored in VSTM. Because VSTM has a capacity for
four objects representations, all four will remain in VSTM at
the beginning of the second trial’s critical 100 ms. Because
the circle from the previous trial is in VSTM, its color will be
enhanced, resulting in a selection history effect; and because
the circle retrieved from LTM is in VSTM, its color will be
enhanced, resulting in a top-down goal effect.

Finally, the Button Pusher is passed one of three responses:
“vertical” or “horizontal” if the model engages with a target
(blue or orange) circle and determines the orientation of its
inner line, or a “guess” response if the masks cover the circles
before the model engages with a target circle. The appearance
of the masks is detected by the Ensemble Change Detector,
which responds to large-scale changes to the image.

Overall, the model succeeds at the search task if it selects
and engages with the target circle during the 100 ms before
the masks appear, enabling it to generate the appropriate re-
sponse. It fails if either it selects the target circle after the
masks appear, in which case the response may be incorrect;
or it never selects the target circle, in which case it generates
a “guess” response.

Activation Highlighter

The Activation Highlighter integrates salience and enhance-
ment to determine each region’s activation strength. Salience
is computed via a novel algorithm based on Itti, Koch, and
Niebur’s (1998) classic computational approach. Operating
over the color, orientation, and brightness dimensions, the al-
gorithm computes local contrast throughout the image, and
then computes global contrast for each region of interest. A
region’s salience varies from O to 1, where 1 indicates the re-
gion strongly stands out on one dimension (e.g., its color is
unique, whereas the other regions all have similar colors), or
moderately stands out on multiple dimensions.

Spatial enhancement is computed based on whether the re-
gion overlaps the location of an object in VSTM. For simplic-
ity, we assign a score of 1 if it overlaps an enhanced object, -1
if it overlaps a suppressed object, and 0 if it does not overlap
an object.

Featural enhancement, currently computed only for color,
is based on the similarity between colors within a region and
colors of objects being enhanced. A region will receive a
score of 1 if it perfectly matches the colors of all enhanced
objects. Note that in some cases, two different colors may
be enhanced—for example, if the previous trial involved a
blue circle, but the model just retrieved an orange circle from
memory. In these cases, a region will receive a score based
on the average of its color match to the two enhanced objects.
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To ensure some randomness, Gaussian noise is added to
the activation strength, according to the following formula:

Gaussian(gaussian-width) + weight, = Salience +

(1 —weightyq) *0.5(Enhancementpgce + Enhancement features )

Finally, the Activation Highlighter computes the average
activation strength over the past five cycles and compares this
average to an activation-threshold to determine whether a re-
gion has a sufficiently high score to be selected. Averaging
over five cycles achieves the desired effect that objects with
more salience or enhancement will be selected more quickly,
as it will take fewer cycles after onset for the running average
to exceed activation-threshold.

Note that there are three free parameters: weight,, the
weight given to salience, relative to enhancement; gaussian-
width the width of the Gaussian noise; and activation-
threshold. For now, we set weight, to 0.2 (meaning salience
receives one quarter the weight of enhancement), and we shall
use the simulation that follows to explore possible noise and
threshold values.

Evaluation

To simulate the Belopolsky and Awh (2016) search task, we
generated input videos that match the original study’s stim-
uli exactly, with two exceptions: (1) as discussed previously,
the verbal cues “orange” and “blue” were replaced with hori-
zontal and vertical rectangles; (2) some portions of each trial
were sped up to save processing time, but the critical 100 ms
display time went unchanged.

In the original experiment, 24 participants each viewed a
large number of practice trials, followed by 600 search tri-
als. For the simulation, five virtual participants each viewed
40 practice trials, followed by 600 search trials. Because the
virtual participants were all the same model, and they dif-
fered only in the particular trials they viewed, we combined
the 3000 (5 x 600) results and analyzed by item. To reduce
variance, “guess’” responses were treated as 0.5 correct.

We ran the simulation across a range of activation-
threshold and gaussian-width values. Figure 4 presents the
results with a low (0.04) or medium (0.11) threshold, and with
no or moderate (0.1) noise. Overall, it appears that a medium
threshold and some noise were needed to achieve human-like
performance; without these, the model performed at or near
ceiling for all salient targets. The rightmost graph in Fig-
ure 4 closely matches the human results (Figure 2, note that
the units are different), but a qualitative comparison suggests
that repetition provides a stronger benefit to the model than to
humans. In the model, repetition and valid cues provide sim-
ilar benefits, but perhaps the benefit from repetition should
be weaker because viewers stop engaging with a target circle
after a trial ends.

To examine the benefits of target salience, cue validity, and
repetition, we conducted an ANOVA for each simulation run.
These analyses confirmed that all three factors contributed
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Figure 4: Model simulation results. Error bars are +1 SE.

significantly to accuracy (all ps < .05), and additionally found
that most interactions between factors were significant. As
we discussed when considering the human results, we be-
lieve these interactions are driven by a ceiling effect—note
that performance is at 100% for some conditions.

Conclusion

Our computational model is able to perform a visual search
task, while demonstrating how salience, selection history,
and top-down goals influence attentional capture. In par-
ticular, the acts of engaging with task-relevant objects and
retrieving previously selected objects influence which fea-
tures become enhanced, thereby causing relevant objects to
be selected more easily in the future.

Ultimately, the model suggests that humans possess only
limited top-down control over attentional capture. For ex-
ample, the model predicts that a verbal cue will be effective
only when viewers are able to act on it. Suppose that af-
ter many trials of the visual search experiment, viewers are
presented with a novel verbal cue, such as “red.” This cue
should provide little benefit because viewers have not been
engaging with red circles, and thus red circles are unavailable
for retrieval. In contrast, a novel visual cue, such as an image
of a red circle preceding the search trial, should provide an
immediate benefit because selecting the red circle causes its
features to be enhanced.

In developing this model, we drew inspiration from pre-
vious models of visual search and attentional capture. No-
tably, most models explain the influence of salience (Itti et
al., 1998), top-down goals (Wischnewski, Steil, Kehrer, &
Schneider, 2009), or both (Tsotsos, Kotseruba, & Wloka,
2016). We believe our model is unique in explaining the
influences of salience, top-down goals, and selection, while
making explicit claims about the limits of top-down control.

Moving forward, we plan to evaluate our model and the
parameters that have been calibrated on the present task by
simulating additional search tasks. These will include con-
junctive searches, in which there is benefit to enhancing mul-
tiple feature dimensions (color, orientation, curvature, etc)
in parallel (Wolfe, 2007). In addition, these will include
longer searches in which there is time to move the eyes. Eye
movement—which can be simulated in ARCADIA—is an-
other deliberate action that influences selection and enhance-
ment. Thus, viewers can optimize their search performance
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through strategic control of their looking patterns (Pomplun,
Garaas, & Carrasco, 2013). By modeling the actions and
strategic decisions that affect attentional capture, we hope to
better understand how people can effectively extract impor-
tant, task-relevant information from the world around them.
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